Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T00:27:49.793Z Has data issue: false hasContentIssue false

Variable charge many-body interatomic potentials

Published online by Cambridge University Press:  09 May 2012

Yun Kyung Shin
Affiliation:
Department of Mechanical and Nuclear Engineering, Pennsylvania State University; yks2@psu.edu
Tzu-Ray Shan
Affiliation:
Sandia National Laboratories, Albuquerque, NM; tnshan@sandia.gov
Tao Liang
Affiliation:
Department of Materials Science and Engineering, University of Florida; liang75@ufl.edu
Mark J. Noordhoek
Affiliation:
Department of Materials Science and Engineering, University of Florida; mjnoord@gmail.com
Susan B. Sinnott
Affiliation:
Department of Materials Science and Engineering, University of Florida; ssinn@mse.ufl.edu
Adri C.T. van Duin
Affiliation:
Department of Mechanical and Nuclear Engineering, Pennsylvania State University; acv13@psu.edu
Simon R. Phillpot
Affiliation:
Department of Materials Science and Engineering, University of Florida; sphil@mse.ufl.edu
Get access

Abstract

Recent developments in reactive potentials for the simulation of complex bonding and complex chemistry are reviewed. In particular, the reactive force field and charged optimized many-body methods are two paradigms that enable atoms to autonomously determine their charge state and the nature of their local bonding environments. The capabilities of these methods are illustrated by examples involving ionic-covalent systems, a metal-covalent system, a high-k dielectric gate stack, and the interaction of water with an oxide. Prospects for future development and applications are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sholl, D.S., Steckel, J.A., Density Functional Theory: A Practical Introduction (Wiley, Hoboken, NJ, 2009).CrossRefGoogle Scholar
2.van Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W.A., J. Phys. Chem. A 105, 9396 (2001).CrossRefGoogle Scholar
3.Yu, J., Sinnott, S.B., Phillpot, S.R., Phys. Rev. B 75, 085311 (2007).CrossRefGoogle Scholar
4.Shan, T.-R., Devine, B.D., Hawkins, J.M., Asthagiri, A., Phillpot, S.R., Sinnott, S.B., Phys. Rev. B 82, 235302 (2010).CrossRefGoogle Scholar
5.Allinger, N.L., Yuh, Y.H., Lii, J.-H., J. Am. Chem. Soc. 111, 8551 (1989).CrossRefGoogle Scholar
6.Cornell, W.D., Cieplak, P., Bayly, C., Gould, I.R., Merz, K.M.J., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A., J. Am. Chem. Soc. 117, 5179 (1995).CrossRefGoogle Scholar
7.Chen, H.-P., Kalia, R.K., Kaxiras, E., Lu, G., Nakano, A., Nomura, K.I., van Duin, A.C.T., Vashishta, P., Yuan, Z., Phys. Rev. Lett. 104, 155502/1 (2010).CrossRefGoogle Scholar
8.Nomura, K.I., Kalia, R., Nakano, A., Vashishta, P., van Duin, A.C.T., Goddard, W.A., Phys. Rev. Lett. 99, 148303 (2007).CrossRefGoogle Scholar
9.Nakano, A., Kalia, R.K., Nomura, K.I., Sharma, A., Vashishta, P., Shimojo, F., van Duin, A.C.T., Goddard, W.A., Biswas, R., Srivastava, D., Comput. Mater. Sci. 38, 642 (2007).CrossRefGoogle Scholar
10.Zybin, S.V., Goddard, W.A., Xu, P., van Duin, A.C.T., Thompson, A.P., Appl. Phys. Lett. 96, 081918/1 (2010).CrossRefGoogle Scholar
11.Chenoweth, K., van Duin, A.C.T., Goddard, W.A., J. Phys. Chem. A 112, 1040 (2008).CrossRefGoogle Scholar
12.Chenoweth, K., van Duin, A.C.T., Persson, P., Cheng, M.J., Oxgaard, J., Goddard, W.A., J. Phys. Chem. C 112, 14645 (2008).CrossRefGoogle Scholar
13.Russo, M., van Duin, A.C.T., Nucl. Instrum. Methods Phys. Res., Sect. B 269, 1549 (2011).CrossRefGoogle Scholar
14.Devine, B., Shan, T.-R., Cheng, Y.-T., McGaughey, A.J.H., Lee, M., Phillpot, S.R., Sinnott, S.B., Phys. Rev. B 84, 125308 (2011).CrossRefGoogle Scholar
15.Mortier, W.J., Ghosh, S.K., Shankar, S., J. Am. Chem. Soc. 108, 4315 (1986).CrossRefGoogle Scholar
16.Rappe, A.K., Goddard, W.A. III, J. Phys. Chem. 95, 3358 (1991).CrossRefGoogle Scholar
17.Streitz, F.H., Mintmire, J.W., Phys. Rev. B 50, 11996 (1994).CrossRefGoogle Scholar
18.Zhou, X.W., Wadley, H.N.G., Filhol, J.-S., Neurock, M.N., Phys. Rev. B 69, 035402 (2004).CrossRefGoogle Scholar
19.de Vos Burchart, E., Verheij, V.A., van Bekkum, H., van de Graaf, H.B., Zeolites 12, 183 (1992).CrossRefGoogle Scholar
20.de Vos Burchart, E., PhD thesis, Delft University of Technology, The Netherlands (1992).Google Scholar
21.Allen, M.P., Tildesley, D.J., Computer Simulation of Liquids (Oxford University Press, UK, 1989).Google Scholar
22.Thomas, B.S., Marks, N.A., Begg, V.D., Phys. Rev. B 69, 144122 (2004).CrossRefGoogle Scholar
23.Weismiller, M.R., van Duin, A.C.T., Lee, J., Yetter, R.A., J. Phys. Chem. A 114, 5485 (2010).CrossRefGoogle Scholar
24.Agrawalla, S., van Duin, A.C.T., J. Phys. Chem. A 115, 960 (2011).CrossRefGoogle Scholar
25.Zhang, L., Zybin, S.V., van Duin, A.C.T., Goddard, W.A., J. Energetic Mater. 28, 92 (2010).CrossRefGoogle Scholar
26.Zhang, L.Z., Zybin, S.V., van Duin, A.C.T., Dasgupta, S., Goddard, W.A., Kober, E.M., J. Phys. Chem. A 113, 10619 (2009).CrossRefGoogle Scholar
27.Zhang, L.Z., van Duin, A.C.T., Zybin, S.V., Goddard, W.A., J. Phys. Chem. B 113, 10770 (2009).CrossRefGoogle Scholar
28.van Duin, A.C.T., Zeiri, Y., Dubnikova, F., Kosloff, R., Goddard, W.A., J. Am. Chem. Soc. 127, 11053 (2005).CrossRefGoogle Scholar
29.Strachan, A., Kober, E.M., van Duin, A.C.T., Oxgaard, J., Goddard, W.A., J. Chem. Phys. 122, 54502 (2005).CrossRefGoogle Scholar
30.Strachan, A., van Duin, A.C.T., Chakraborty, D., Dasgupta, S., Goddard, W.A., Phys. Rev. Lett. 91, 098301 (2003).CrossRefGoogle Scholar
31.Rahaman, O., van Duin, A.C.T., Goddard, W.A., Doren, D.J., J. Phys. Chem. B 115, 249 (2011).CrossRefGoogle Scholar
32.Rahaman, O., van Duin, A.C.T., Bryantsev, V.S., Mueller, J.E., Solares, S.D., Goddard, W.A., Doren, D.J., J. Phys. Chem. A 114, 3556 (2010).CrossRefGoogle Scholar
33.Zhu, R., Janetzko, F., Zhang, Y., van Duin, A.C.T., Goddard, W.A., Salahub, D.R., Theor. Chem. Acc. 120, 479 (2008).CrossRefGoogle Scholar
34.Abolfath, R.M., van Duin, A.C.T., Biswas, P., Brabec, T., J. Phys. Chem. A 115, 11045 (2011).CrossRefGoogle Scholar
35.Russo, M., Li, R., Mench, M., van Duin, A.C.T., Int. J. Hydrogen Energy 36, 5828 (2011).CrossRefGoogle Scholar
36.Raymand, D., van Duin, A.C.T., Goddard, W.A., Hermansson, K., Spangberg, D., J. Phys. Chem. A 115, 8573 (2011).Google Scholar
37.van Duin, A.C.T., Bryantsev, V.S., Diallo, M.S., Goddard, W.A., Rahaman, O., Doren, D.J., Raymand, D., Hermansson, K., J. Phys. Chem. A 114, 9507 (2010).CrossRefGoogle Scholar
38.Raymand, D., van Duin, A.C.T., Spangberg, D., Goddard, W.A., Hermansson, K., Surf. Sci. 604, 741 (2010).CrossRefGoogle Scholar
39.Fogarty, J.C., Aktulga, H.M., Grama, A.Y., van Duin, A.C.T., Pandit, S.A., J. Chem. Phys. 132, 174704/1 (2010).CrossRefGoogle Scholar
40.Aryanpour, M., van Duin, A.C.T., Kubicki, J.D., J. Phys. Chem. A 114, 6298 (2010).CrossRefGoogle Scholar
41.Srinivasan, S.G., van Duin, A.C.T., J. Phys. Chem. A 115, 13269 (2011).CrossRefGoogle Scholar
42.Mathews, J.P., van Duin, A.C.T., Chaffee, A.L., Fuel Process. Technol. 92, 718 (2011).CrossRefGoogle Scholar
43.Bagri, A., Mattevi, C., Acik, M., Chabal, Y.J., Chhowalla, M., Shenoy, V.B., Nat. Chem. 2, 581 (2010).CrossRefGoogle Scholar
44.Bagri, A., Grantab, R., Medhekar, N.Y., Shenoy, V.B., J. Phys. Chem. C 114, 12053 (2010).CrossRefGoogle Scholar
45.Salmon, E., van Duin, A.C.T., Lorant, F., Marquaire, P.M., Goddard, W.A., Org. Geochem. 40, 416 (2009).CrossRefGoogle Scholar
46.Salmon, E., van Duin, A.C.T., Lorant, F., Marquaire, P.M., Goddard, W.A., Org. Geochem. 40, 1195 (2009).CrossRefGoogle Scholar
47.Chenoweth, K., van Duin, A.C.T., Dasgupta, S., Goddard, W.A., J. Phys. Chem. A 113, 1740 (2009).CrossRefGoogle Scholar
48.Goddard, W.A., Mueller, J.E., Chenoweth, K., van Duin, A.C.T., Catal. Today 157, 71 (2010).CrossRefGoogle Scholar
49.Chenoweth, K., van Duin, A.C.T., Goddard, W.A., Angew. Chem. Int. Ed. 48, 7630 (2009).CrossRefGoogle Scholar
50.Goddard, W.A., Chenoweth, K., Pudar, S., van Duin, A.C.T., Cheng, M.J., Top. Catal. 50, 2 (2008).CrossRefGoogle Scholar
51.Neyts, E.C., van Duin, A.C.T., Bogaerts, A., J. Am. Chem. Soc. 133, 17225 (2011).CrossRefGoogle Scholar
52.Valentini, P., Schwartzentruber, T.E., Cozmuta, I., J. Chem. Phys. 133, 084703/1 (2010).CrossRefGoogle Scholar
53.Neyts, E.C., Shibuta, Y., van Duin, A.C.T., Bogaerts, A., ACS Nano 4, 6665 (2010).CrossRefGoogle Scholar
54.Mueller, J.E., van Duin, A.C.T., Goddard, W.A., J. Phys. Chem. C 114, 20028 (2010).CrossRefGoogle Scholar
55.Mueller, J.E., van Duin, A.C.T., Goddard, W.A., J. Phys. Chem. C 114, 5675 (2010).CrossRefGoogle Scholar
56.Mueller, J.E., van Duin, A.C.T., Goddard, W.A., J. Phys. Chem. C 114, 4939 (2010).CrossRefGoogle Scholar
57.Kamat, A.M., van Duin, A.C.T., Yakovlev, A., J. Phys. Chem. A 114, 12561 (2010).CrossRefGoogle Scholar
58.Shan, T.-R., Devine, B.D., Kemper, T.W., Sinnott, S.B., Phillpot, S.R., Phys. Rev. B 81, 125328 (2010).CrossRefGoogle Scholar
59.Shan, T.-R., Devine, B.D., Sinnott, S.B., Phillpot, S.R., Phys. Rev. B 83, 115327 (2011).CrossRefGoogle Scholar
60.Tersoff, J., Phys. Rev. B 38, 9902 (1988).CrossRefGoogle Scholar
61.van Duin, A.C.T., Strachan, A., Stewman, S., Zhang, Q.S., Xu, X., Goddard, W.A., J. Phys. Chem. A 107, 3803 (2003).CrossRefGoogle Scholar
62.Henkelman, G., Arnaldsson, A., Jónsson, H., Comput. Mater. Sci. 36, 254 (2006).CrossRefGoogle Scholar
63.Coombs, P.G., Denatale, J.F., Hood, P.J., McElfresh, D.K., Wortman, R.S., Shackelford, J.F., Philos. Mag. B 51, L39 (1985).CrossRefGoogle Scholar
64.Neyts, E.C., Khalilov, U., Portois, G., van Duin, A.C.T., J. Phys. Chem. C 115, 4818 (2011).CrossRefGoogle Scholar
66.Rignanese, G.M., J. Phys.: Condens. Matter 17, R357 (2005).Google Scholar
67.Zhao, X.Y., Vanderbilt, D., Phys. Rev. B 65, 233206 (2002).Google Scholar
68.Gusev, E.P., Cabral, C., Copel, M., D’Emic, C., Gribelyuk, M., Microelectron. Eng. 69, 145 (2003).CrossRefGoogle Scholar
69.Weast, R.C. (Ed.), Handbook of Chemistry and Physics (Chemical Rubber, Cleveland, OH, 1969).Google Scholar
70.Foster, A.S., Gejo, F.L., Shluger, A.L., Nieminen, R.M., Phys. Rev. B 65, 174117 (2002).CrossRefGoogle Scholar
71.Ritala, M., Leskela, M., Niinisto, L., Prohaska, T., Friedbacher, G., Grasserbauer, M., Thin Solid Films 250, 72 (1994).CrossRefGoogle Scholar
72.Ushakov, S.V., Navrotsky, A., Yang, Y., Stemmer, S., Kukli, K., Ritala, M., Leskelä, M.A., Fejes, P., Demkov, A., Wang, C., Nguyen, B.-Y., Triyoso, D., Tobin, P., Phys. Status Solidi B 241, 2268 (2004).CrossRefGoogle Scholar
73.Fang, Q., Zhang, J.Y., Wang, Z., Modreanu, M., O’Sullivan, B.J., Hurley, P.K., Leedham, T.L., Hywel, D., Audier, M.A., Jimenez, C., Senateur, J.-P., Boyd, I.W., Thin Solid Films 453, 203 (2004).CrossRefGoogle Scholar
74.Luo, X., Demkov, A.A., Triyoso, D., Fejes, P., Gregory, R., Zollner, S., Phys. Rev. B 78, 245314 (2008).CrossRefGoogle Scholar
75.Ramana, C.V., Noor-A-Alam, M., Gengler, J.J., Jones, J.G., ACS Appl. Mater. Interfaces 4, 200 (2012).CrossRefGoogle Scholar
76.Nangia, S., Garrison, B.J., Mol. Phys. 107, 831 (2009).CrossRefGoogle Scholar
77.Pelmenschikov, A., Leszczynski, J., Pettersson, L.G.M., J. Phys. Chem. A 105, 9528 (2001).CrossRefGoogle Scholar
78.Xiao, Y.T., Lasaga, A.C., Geochim. Cosmochim. Acta 60, 2283 (1996).CrossRefGoogle Scholar
79.Argyris, D., Cole, D.R., Striolo, A., J. Phys. Chem. C 113, 19591 (2009).CrossRefGoogle Scholar
80.de Leeuw, N.H., Higgins, F.M., Parker, S.C., J. Phys. Chem. B 103, 1270 (1999).CrossRefGoogle Scholar
81.Hassanali, A.A., Singer, S.J., J. Phys. Chem. B 111, 11181 (2007).CrossRefGoogle Scholar
82.Tsuneyuki, S., Tsukada, M., Aoki, H., Matsui, Y., Phys. Rev. Lett. 61, 869 (1998).CrossRefGoogle Scholar
83.Vanbeest, B.W., Kramer, G.J., van Santen, R.A., Phys. Rev. Lett. 64, 1955 (1990).CrossRefGoogle Scholar
84.Lockwood, G.K., Garofalini, S.H., J. Chem. Phys. 131, 074703 (2009).CrossRefGoogle Scholar
85.Mahadevan, T.S., Garofalini, S.H., J. Phys. Chem. B 111, 8919 (2007).CrossRefGoogle Scholar
86.Mahadevan, T.S., Garofalini, S.H., J. Phys. Chem. C 112, 1507 (2008).CrossRefGoogle Scholar
87.Quenneville, J., Taylor, R.S., van Duin, A.C.T., J. Phys. Chem. C 114, 18894 (2010).CrossRefGoogle Scholar
88.Stillnger, F.H., Weber, T.A., Phys. Rev. B 31, 5262 (1985).CrossRefGoogle Scholar
89.LAMMPS, LAMMPS molecular dynamics package; http://lammps.sandia.gov.Google Scholar
90.Plimpton, S., J. Comp. Phys. 117, 119 (1995).CrossRefGoogle Scholar