Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T22:05:52.316Z Has data issue: false hasContentIssue false

Understanding interfacial water and its role in practical applications using molecular simulations

Published online by Cambridge University Press:  12 December 2014

Alberto Striolo*
Affiliation:
Department of Chemical Engineering, University College London, United Kingdom; a.striolo@ucl.ac.uk
Get access

Abstract

Interfacial water is believed to determine practical outcomes in systems of interest to biology, materials science, geology, and many other disciplines. In this article, recent progress in understanding interfacial water achieved using molecular simulations is reviewed. After the reliability of recent approaches is discussed, three possible research directions are described. These future developments promise to have a large impact on both fundamental science and applications of societal importance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Vega, C., Abascal, J.L.F., Phys. Chem. Chem. Phys. 13, 19663 (2011).CrossRefGoogle Scholar
Allen, M.P., Tildesley, D.J., Computer Simulation of Liquids (Oxford University Press, Oxford, UK, 1989).Google Scholar
Frenkel, D., Smit, B., Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, London, 2002).Google Scholar
Gray, C.G., Gubbins, K.E., Joslin, C.G., Theory of Molecular Fluids (Oxford University Press, Oxford, UK, 2011), vol. 2.Google Scholar
Ben-Naim, A., Marcus, Y., J. Chem. Phys. 81, 2016 (1984).Google Scholar
Kauzmann, W., Adv. Protein Chem. 14, 1 (1959).Google Scholar
Israelachvili, J.N., Intermolecular and Surface Forces 3rd ed. (Academic Press, San Diego, CA, 2011).Google Scholar
Baldwin, R.L., FEBS Lett. 587, 1062 (2013).Google Scholar
Wu, J., Prausnitz, J.M., Proc. Natl. Acad. Sci. U.S.A. 105, 9512 (2008).CrossRefGoogle Scholar
Ashbaugh, H.S., Pratt, L.R., Rev. Mod. Phys. 78, 159 (2006).CrossRefGoogle Scholar
Ashbaugh, H.S., Pratt, L.R., J. Phys. Chem. B 111, 9330 (2007).Google Scholar
Chaudhari, M.I., Holleran, S.A., Ashbaugh, H.S., Pratt, L.R., Proc. Natl. Acad. Sci. U.S.A. 110, 20557 (2013).Google Scholar
Roberts, D., Keeling, R., Tracka, M., van der Walle, C.F., Uddin, S., Warwicker, J., Curtis, R., Mol. Pharm. 11, 2475 (2014).Google Scholar
Lee, S.H., Rasaiah, J.C., J. Phys. Chem. 100, 1420 (1996).Google Scholar
Smith, D.E., Dang, L.X., J. Chem. Phys. 100, 3757 (1994).Google Scholar
Dang, L.X., Truong, T.B., Ginovska-Pangovska, B., J. Chem. Phys. 136, 126101 (2012).CrossRefGoogle Scholar
Dang, L.X., Sun, X., Ginovska-Pangovska, B., Annapureddy, H.V.R., Truong, T.B., Faraday Discuss. 160, 151 (2013).Google Scholar
Rankin, B.M., Ben-Amotz, D., J. Am. Chem. Soc. 135, 8818 (2013).Google Scholar
Scheu, R., Chen, Y., de Aguiar, H.B., Rankin, B.M., Ben-Amotz, D., Roke, S., J. Am. Chem. Soc. 136, 2040 (2014).Google Scholar
Lo Nostro, P., Ninham, B.W., Chem. Rev. 112, 2286 (2012).Google Scholar
Jungwirth, P., Cremer, P.S., Hofmeister, B., Nat. Chem. 6, 261 (2014).Google Scholar
Striolo, A., Adsorpt. Sci. Technol. 29, 211 (2011).Google Scholar
Striolo, A., Chialvo, A.A., Cummings, P.T., Gubbins, K.E., Langmuir 19, 8583 (2003).Google Scholar
Argyris, D., Tummala, N.R., Striolo, A., Cole, D.R., J. Phys. Chem. C 112, 13587 (2008).Google Scholar
Gordillo, M.C., Marti, J., J. Phys. Condens. Matter 22, 284111 (2010).CrossRefGoogle Scholar
Argyris, D., Phan, A., Ashby, P.D., Striolo, A., J. Phys. Chem. C 117, 10433 (2013).CrossRefGoogle Scholar
Catalano, J.C., Geochim. Cosmochim. Acta 75, 2062 (2011).Google Scholar
Catalano, J.C., J. Phys. Chem. C 114, 6624 (2010).Google Scholar
Phan, A., Ho, T.A., Cole, D.R., Striolo, A., J. Phys. Chem. C 116, 15962 (2012).CrossRefGoogle Scholar
Wang, J., Kalinichev, A.G., Kirkatrick, R.J., J. Phys. Chem. C 113, 11077 (2009).Google Scholar
Waychunas, G.A., Science 344, 1094 (2014).Google Scholar
Lis, D., Backus, E.H.G., Hunger, J., Parekh, S.H., Bonn, M., Science 344, 1138 (2014).Google Scholar
Argyris, D., Ashby, P.D., Striolo, A., ACS Nano 5, 2215 (2011).Google Scholar
Elder, R.M., Jayaraman, A., Soft Matter 9, 11521 (2013).Google Scholar
Wang, J., Bratko, D., Luzar, A., Proc. Natl. Acad. Sci. U.S.A. 108, 6734 (2011).Google Scholar
Ho, T.A., Papavassiliou, D.V., Lee, L.L., Striolo, A., Proc. Natl. Acad. Sci. U.S.A. 108, 16170 (2011).CrossRefGoogle Scholar
Jamadagni, S.N., Godawat, R., Garde, S., Annu. Rev. Chem. Biomol. Eng. 2, 147 (2011).CrossRefGoogle Scholar
Garde, S., Patel, A.J., Proc. Natl. Acad. Sci. U.S.A. 108, 16491 (2011).Google Scholar
Patel, A.J., Varilly, P., Jamadagni, S.N., Acharya, H., Garde, S., Chandler, D., Proc. Natl. Acad. Sci. U.S.A. 108, 17678 (2011).Google Scholar
Patel, A.J., Varilly, P., Chandler, D., Garde, S., J. Stat. Phys. 145, 265 (2011).Google Scholar
Jamadagni, S.N., Godawat, R., Garde, S., Langmuir 25, 13092 (2009).Google Scholar
Vembanur, S., Patel, A.J., Sarupria, S., Garde, S., J. Phys. Chem. B 117, 10261 (2013).CrossRefGoogle Scholar
Rafiee, J., Mi, X., Gullapalli, H., Thomas, A.V., Yavari, F., Shi, Y.F., Ajayan, P.M., Koratkar, N.A., Nat. Mater. 11, 217 (2012).Google Scholar
Shih, C.-J., Strano, M.S., Blankschtein, D., Nat. Mater. 12, 866 (2013).Google Scholar
Sharma, S., Debenedetti, P.G., Proc. Natl. Acad. Sci. U.S.A. 109, 4365 (2012).Google Scholar
Ferguson, A.L., Giovambattista, N., Rossky, P.J., Panagiotopoulos, A.Z., Debenedetti, P.G., J. Chem. Phys. 137, 144501 (2012).Google Scholar
Sharma, S., Debenedetti, P.G., J. Phys. Chem. B 116, 13282 (2012).Google Scholar
Lin, S., Shih, C.-J., Strano, M.S., Blankschtein, D., J. Am. Chem. Soc. 133, 12810 (2011).Google Scholar
Shih, C.-J., Lin, S., Strano, M.S., Blankschtein, D., J. Am. Chem. Soc. 132, 14638 (2010).Google Scholar
Phan, A., Cole, D.R., Striolo, A., Langmuir 30, 8066 (2014).Google Scholar
Daly, K.B., Benziger, J.B., Debenedetti, P.G., Panagiotopoulos, A.Z., J. Phys. Chem. B 117, 12649 (2013).CrossRefGoogle Scholar
Fornasiero, F., Krull, F., Prausnitz, J.M., Radke, C.J., Biomaterials 26, 5704 (2005).CrossRefGoogle Scholar
Yethiraj, A., Striolo, A., J. Phys. Chem. Lett. 4, 687 (2013).Google Scholar
Striolo, A., Gubbins, K.E., Burchell, T.D., Simonson, J.M., Cole, D.R., Gruszkiewicz, M.S., Chialvo, A.A., Cummings, P.T., Langmuir 21, 9457 (2005).Google Scholar
Giovambattista, N., Rossky, P.J., Debenedetti, P.G., Annu. Rev. Phys. Chem. 63, 179 (2012).Google Scholar
Phan, A., Cole, D.R., Striolo, A., J. Phys. Chem. C 118, 4860 (2014).Google Scholar
Chakraborty, S.N., Gelb, L.D., J. Phys. Chem. B 116, 2183 (2012).CrossRefGoogle Scholar
Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J., Mayes, A.M., Nature 452, 301 (2008).CrossRefGoogle Scholar
Tour, J.M., Kittrell, C., Colvin, V.L., Nat. Mater. 9, 871 (2010).Google Scholar
Cohen-Tanugi, D., Grossman, J.C., Nano Lett. 12, 3602 (2012).Google Scholar
Konatham, D., Yu, J., Ho, T.A., Striolo, A., Langmuir 29, 11884 (2013).Google Scholar
Merlet, C., Péan, C., Rotenberg, B., Madden, P.A., Daffos, B., Taberna, P.L., Simon, P., Salanne, M., Nat. Commun. 4, 2701 (2013).Google Scholar
Kalluri, R.K., Biener, M.M., Suss, M.E., Merrill, M.D., Stadermann, M., Santiago, J.D., Baumann, T.F., Biener, J., Striolo, A., Phys. Chem. Chem. Phys. 15, 2309 (2013).Google Scholar
Ho, T.A., Kalluri, R.K., Biener, M.M., Biener, J., Striolo, A., J. Phys. Chem. C 117, 13609 (2013).Google Scholar
Bazant, M.Z., Storey, B.D., Kornyshev, A.A., Phys. Rev. Lett. 107, 046102 (2011).CrossRefGoogle Scholar
Alijó, P.H.R., Tavares, F.W., Biscaia, E.C. Jr., Secchi, A.R., Fluid Phase. Equilib. 362, 177 (2014).Google Scholar