Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T11:44:10.676Z Has data issue: false hasContentIssue false

Ultrafast laser-induced morphological transformations

Published online by Cambridge University Press:  06 December 2016

Michael J. Abere
Affiliation:
Sandia National Laboratories, USA; mjabere@sandia.gov and mjkabere@gmail.com
Minlin Zhong
Affiliation:
Laser Materials Processing Research Centre, School of Material Science & Engineering, Tsinghua University, China; zhml@tsinghua.edu.cn
Jörg Krüger
Affiliation:
6.4 Nanomaterial Technologies Division, Bundesanstalt für Materialforschung und –prüfung (BAM), Germany; joerg.krueger@bam.de
Jörn Bonse
Affiliation:
6.4 Nanomaterial Technologies Division, Bundesanstalt für Materialforschung und –prüfung (BAM), Germany; joern.bonse@bam.de
Get access

Abstract

Ultrafast laser processing can be used to realize various morphological surface transformations, ranging from direct contour shaping to large-area-surface functionalization via the generation of “self-ordered” micro- and nanostructures as well as their hierarchical hybrids. Irradiation with high-intensity laser pulses excites materials into extreme conditions, which then return to equilibrium through these unique surface transformations. In combination with suitable top-down or bottom-up manufacturing strategies, such laser-tailored surface morphologies open up new avenues toward the control of optical, chemical, and mechanical surface properties, featuring various technical applications especially in the fields of photovoltaics, tribology, and medicine. This article reviews recent efforts in the fundamental understanding of the formation of laser-induced surface micro- and nanostructures and discusses some of their emerging capabilities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Küper, S., Stuke, M., Appl. Phys. B 44, 199 (1987).CrossRefGoogle Scholar
Srinivasan, R., Sutcliffe, E., Braren, B., Appl. Phys. Lett. 51, 1285 (1987).CrossRefGoogle Scholar
Bonse, J., Krüger, J., J. Appl. Phys. 107, 054902 (2010).CrossRefGoogle Scholar
Bäuerle, D., Laser Processing and Chemistry, 4th ed. (Springer-Verlag, Berlin, 2011).CrossRefGoogle Scholar
Glezer, E.N., Siegal, Y., Huang, L., Mazur, E., Phys. Rev. B Condens. Matter 51, 6959 (1995).CrossRefGoogle Scholar
Shank, C.V., Yen, R., Hirlimann, C., Phys. Rev. Lett. 50, 454 (1983).CrossRefGoogle Scholar
Rousse, A., Rischel, C., Formaux, S., Uschmann, I., Sebban, S., Grillon, G., Balcou, P., Förster, E., Geindre, J.P., Audebert, P., Gauthier, J.C., Hulin, D., Nature 410, 65 (2001).CrossRefGoogle Scholar
Zier, T., Zijlstra, E.S., Kalitsov, A., Theodonis, I., Garcia, M.E., Struct. Dyn. 2, 054101 (2015).CrossRefGoogle Scholar
Stoian, R., Rosenfeld, A., Ashkenasi, D., Hertel, I.V., Bulgakova, N.M., Campbell, E.E.B., Phys. Rev. Lett. 88, 097603 (2002).CrossRefGoogle Scholar
Bonse, J., Rosenfeld, A., Krüger, J., J. Appl. Phys. 106, 104910 (2009).CrossRefGoogle Scholar
Huang, M., Zhao, F., Cheng, Y., Xu, N., Xu, Z., ACS Nano 3, 4062 (2009).CrossRefGoogle Scholar
Murphy, R.D., Torralva, B., Adams, D.P., Yalisove, S.M., Appl. Phys. Lett. 104, 231117 (2014).CrossRefGoogle Scholar
Bulgakova, N.M., Bulgakov, A.V., Appl. Phys. A 73, 199 (2001).CrossRefGoogle Scholar
Bonse, J., Bachelier, G., Siegel, J., Solis, J., Sturm, H., J. Appl. Phys. 103, 054910 (2008).CrossRefGoogle Scholar
Tsibidis, G.D., Barberoglu, M., Loukakos, P.A., Stratakis, E., Fotakis, C., Phys. Rev. B Condens. Matter 86, 115316 (2012).CrossRefGoogle Scholar
van Driel, H.M., Sipe, J.E., Young, J.F., Phys. Rev. Lett. 49, 1955 (1982).CrossRefGoogle Scholar
Reif, J., Costache, F., Henyk, M., Pandelov, S.V., Appl. Surf. Sci. 197, 891 (2002).CrossRefGoogle Scholar
Her, T.-H., Finlay, R., Wu, C., Mazur, E., Appl. Phys. A 70, 383 (2000).CrossRefGoogle Scholar
Tull, B.R., Carey, J.E., Mazur, E., McDonald, J.P., Yalisove, S.M., MRS Bull. 31, 626 (2006).CrossRefGoogle Scholar
Sugioka, K., Cheng, Y., Eds., Ultrafast Laser Processing—From Micro- to Nanoscale (Taylor & Francis, Boca Raton, FL, 2013).CrossRefGoogle Scholar
Joglekar, A.P., Liu, H., Meyhöfer, E., Mourou, G., Hunt, A.J., Proc. Natl. Acad. Sci. U.S.A. 101, 5856 (2004).CrossRefGoogle Scholar
Ringleb, F., Eylers, K., Teubner, T., Boeck, T., Symietz, S., Bonse, J., Andree, S., Krüger, J., Heidmann, B., Schmid, M., Lux-Steiner, M., Appl. Phys. Lett. 108, 111904 (2016).CrossRefGoogle Scholar
Birnbaum, M., J. Appl. Phys. 36, 3688 (1965).CrossRefGoogle Scholar
Borowiec, A., Haugen, H.K., Appl. Phys. Lett. 82, 4462 (2003).CrossRefGoogle Scholar
Vorobyev, A.V., Guo, C., Laser Photon. Rev. 7, 385 (2013).CrossRefGoogle Scholar
Bonse, J., Krüger, J., Höhm, S., Rosenfeld, A., J. Laser Appl. 24, 042006 (2012).CrossRefGoogle Scholar
Bonch-Bruevich, A.M., Libenson, M.N., Makin, V.S., Trubaev, V.A., Opt. Eng. 31, 718 (1992).CrossRefGoogle Scholar
Sipe, J.E., Young, J.F., Preston, J.S., van Driel, H.M., Phys. Rev. B Condens. Matter 27, 1141 (1983).CrossRefGoogle Scholar
Abere, M.J., Torralva, B., Yalisove, S.M., Appl. Phys. Lett. 108, 153110 (2016).CrossRefGoogle Scholar
Lindenberg, A.M., Larsson, J., Sokolowski-Tinten, K., Gaffnery, K.J., Blome, C., Synnergren, O., Sheppard, J., Caleman, C., MacPhee, A.G., Weinstein, D., Lowney, D.P., Allison, T.K., Matthews, T., Falcone, R.W., Cavalieri, A.L., Fritz, D.M., Lee, S.H., Bucksbaum, P.H., Reis, D.A., Rudati, J., Fuoss, P.H., Kao, C.C., Siddons, D.P., Pahl, R., Als-Nielsen, J., Duesterer, S., Ischebeck, R., Schlarb, H., Schulte-Schrepping, H., Tschentscher, T., Schneider, J., von der Linde, D., Hignette, O., Sette, F., Chapman, H.N., Lee, R.W., Hansen, T.N., Techert, S., Wark, J.S., Bergh, M., Huldt, G., van der Spoel, D., Timneanu, N., Hajdu, J., Akre, R.A., Bong, E., Krejcik, P., Arthur, J., Brennan, S., Luening, K., Hastings, J.B., Science 308, 392 (2005).CrossRefGoogle Scholar
Fritz, D.M., Reis, D.A., Adams, B., Akre, R.A., Arthur, J., Blome, C., Bucksbaum, P.H., Cavalieri, A.L., Engemann, S., Fahy, S., Falcone, R.W., Fuoss, P.H., Gaffney, K.J., George, M.J., Hajdu, J., Hertlein, M.P., Hillyard, P.B., Horn-von Hoegen, M., Kammler, M., Kaspar, J., Kienberger, R., Krejcik, P., Lee, S.H., Lindenberg, A.M., McFarland, B., Meyer, D., Montagne, T., Murray, É.D., Nelson, A.J., Nicoul, M., Pahl, R., Rudati, J., Schlarb, H., Siddons, D.P., Sokolowski-Tinten, K., Tschentscher, T., von der Linde, D., Hastings, J.B., Science 315, 633 (2007).Google Scholar
Graves, J.S., Allen, R.E., Phys. Rev. B Condens. Matter 58, 13627 (1998).CrossRefGoogle Scholar
Glezer, E.N., Siegal, Y., Huang, L., Mazur, E., Phys. Rev. B Condens. Matter 51, 9589 (1995).CrossRefGoogle Scholar
Sundaram, S.K., Mazur, E., Nat. Mater. 1, 217 (2002).CrossRefGoogle Scholar
Barnes, W.L., Preist, T.W., Kitson, S.C., Sambles, J.R., Phys. Rev. B Condens. Matter 54, 6227 (1996).CrossRefGoogle Scholar
Yang, W.H., Srolovitz, D.J., Phys. Rev. Lett. 71, 1593 (1993).CrossRefGoogle Scholar
Bonse, J., Koter, R., Hartelt, M., Spaltmann, D., Pentzien, S., Höhm, S., Rosenfeld, A., Krüger, J., Appl. Phys. A 117, 103 (2014).CrossRefGoogle Scholar
Fan, P., Zhong, M., Li, L., Huang, T., Zhang, H., Opt. Express 21, 11628 (2013).CrossRefGoogle Scholar
Fan, P., Zhong, M., Bai, B., Jin, G., Zhang, H., Appl. Surf. Sci. 359, 7 (2015).CrossRefGoogle Scholar
Fan, P., Bai, B., Long, J., Jiang, D., Jin, G., Zhang, H., Zhong, M., Nano Lett. 15, 5988 (2015).CrossRefGoogle Scholar
Fan, P., Zhong, M., Bai, B., Jin, G., Zhang, H., RSC Adv. 6, 45923 (2016).CrossRefGoogle Scholar