Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T22:57:23.706Z Has data issue: false hasContentIssue false

Transition metal-catalyzed polymerization of polar allyl and diallyl monomers

Published online by Cambridge University Press:  13 March 2013

Daisuke Takeuchi*
Affiliation:
Chemical Resources Laboratory, Tokyo Institute of Technology, Japan; dtakeuch@res.titech.ac.jp
Get access

Abstract

Recent advances in polymerization of allyl and diallyl monomers catalyzed by homogeneous Ziegler-Natta catalysts are reviewed. Zirconocene catalysts are effective for copolymerization of ethylene or propylene with Al-masked allyl monomers, as well as homopolymerization of allylsilanes. Phosphine-sulfonate Pd complexes promote the copolymerization of ethylene with various polar allyl monomers, in the absence of a masking agent. Late transition metal catalysts promote stereoselective cyclopolymerization of diallyl monomers having various polar functional groups. The cyclopolymerization of alkyl-substituted diallyl monomers by Pd diimine complexes affords the polymer having alternating oligomethylene and trans-1,2-cyclopentene groups.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chen, E.Y.-X., J. Polym. Sci., Part A: Polym. Chem. 42, 3395 (2004).CrossRefGoogle Scholar
2. Chen, E.Y.-X., Chem. Rev. 109, 5157 (2009).CrossRefGoogle Scholar
3. Boffa, L.S., Novak, B.M., Chem. Rev. 100, 1479 (2000).Google Scholar
4. Yanjarappa, M.J., Sivaram, S., Prog. Polym. Sci. 27, 1347 (2002).CrossRefGoogle Scholar
5. Sen, A., Borkar, S., J. Organomet. Chem. 692, 3291 (2007).CrossRefGoogle Scholar
6. Berkefeld, A., Mecking, S., Angew. Chem. Int. Ed. 47, 2538 (2008).CrossRefGoogle Scholar
7. Nakamura, A., Ito, S., Nozaki, K., Chem. Rev. 109, 5215 (2009).CrossRefGoogle Scholar
8. Tsuji, J., Palladium Reagents and Catalysts (Wiley, Chichester, UK, 1995).Google Scholar
9. Schinzer, D., Synthesis 263 (1988).Google Scholar
10. Arit, K.P., Binsack, R., Grogo, U., Neuray, D., US Patent 4423196 (1983).Google Scholar
11. Imuta, J., Kashiwa, N., Toda, Y., J. Am. Chem. Soc. 124, 1176 (2002).Google Scholar
12. Kashiwa, N., Matsugi, T., Kojoh, S., Kaneko, H., Kawahara, N., Matsuo, S., Nobori, T., Imuta, J., J. Polym. Sci., Part A: Polym. Chem. 41, 3657 (2003).CrossRefGoogle Scholar
13. Imuta, J., Toda, Y., Matsugi, T., Kaneko, H., Matsuo, S., Kojoh, S., Kashiwa, N., Chem. Lett. 32, 656 (2003).CrossRefGoogle Scholar
14. Hagihara, H., Tsuchihara, K., Sugiyama, J., Takeuchi, K., Shiono, T., Macromolecules 37, 5145 (2004).Google Scholar
15. Li, W., Zhang, X., Meetsma, A., Hessen, B., J. Am. Chem. Soc. 126, 12246 (2004).Google Scholar
16. Li, W., Zhang, X., Meetsma, A., Hessen, B., Organometallics 27, 2052 (2008).CrossRefGoogle Scholar
17. Ito, S., Kanazawa, M., Munakata, K., Kuroda, J., Okumura, Y., Nozaki, K., J. Am. Chem. Soc. 133, 1232 (2011).Google Scholar
18. Daigle, J.-C., Piche, L., Arnold, A., Claverie, J.P., ACS Macro Lett. 1, 343 (2012).CrossRefGoogle Scholar
19. Tamao, K., Adv. Silicon Chem. 3, 1, (1996).Google Scholar
20. Ziegler, R., Resconi, L., Balbontin, G., Guerra, G., Venditto, V., De Rosa, C., Polymer 35, 4648 (1994).Google Scholar
21. Habaue, S., Baraki, H., Okamoto, Y., Macromol. Chem. Phys. 199, 2211 (1998).Google Scholar
22. Lipponen, S.H., Seppälä, J.V., Organometallics 30, 528 (2011).Google Scholar
23. Liu, J., Nomura, K., Macromolecules 41, 1070 (2008).Google Scholar
24. Amin, S.B., Marks, T.J., J. Am. Chem. Soc. 129, 2938 (2007).Google Scholar
25. Naga, N., Macromol. Chem. Phys. 206, 1959 (2005).Google Scholar
26. Naga, N., J. Polym. Sci., Part A: Polym. Chem. 44, 6083 (2006).CrossRefGoogle Scholar
27. Coates, G.W., Waymouth, R.M., J. Mol. Catal. 76, 189 (1992).CrossRefGoogle Scholar
28. Edson, J.B., Coates, G.W., Macromol. Rapid Commun. 30, 1900 (2009).Google Scholar
29. Kesti, M.R., Coates, G.W., Waymouth, R.M., J. Am. Chem. Soc. 114, 9679 (1992).CrossRefGoogle Scholar
30. Takeuchi, D., Matsuura, R., Park, S., Osakada, K., J. Am. Chem. Soc. 129, 7002 (2007).Google Scholar
31. Takeuchi, D., Matsuura, R., Fukuda, Y., Osakada, K., Dalton Trans. 41, 8955 (2009).Google Scholar
32. Park, S., Takeuchi, D., Osakada, K., J. Am. Chem. Soc. 128, 3510 (2006).Google Scholar
33. Park, S., Okada, T., Takeuchi, D., Osakada, K., Chem. Eur. J. 16, 8662 (2010).Google Scholar
34. Takeuchi, D., Macromol. Chem. Phys. 212, 1545 (2011).Google Scholar
35. Ie, Y., Yoshimura, A., Takeuchi, D., Osakada, K., Aso, Y., Chem. Lett. 40, 1039 (2011).CrossRefGoogle Scholar
36. Miyamura, Y., Kinbara, K., Yamamoto, Y., Praveen, V.K., Kato, K., Takata, M., Takano, A., Matsushita, Y., Lee, E., Lee, M., Aida, T., J. Am. Chem. Soc. 132, 3292 (2010).CrossRefGoogle Scholar
37. Miyamura, Y., Park, C., Kinbara, K., Leibfarth, F.A., Hawker, C.J., Aida, T., J. Am. Chem. Soc. 133, 2840 (2011).Google Scholar
38. Xiang, P., Ye, Z., Morgan, S., Xia, X., Liu, W., Macromolecules 42, 4946 (2009).Google Scholar
39. Motokuni, K., Okada, T., Takeuchi, D., Osakada, K., Macromolecules 44, 751 (2011).Google Scholar
40. Okada, T., Park, S., Takeuchi, D., Osakada, K., Angew. Chem. Int. Ed. 46, 6141 (2007).CrossRefGoogle Scholar
41. Okada, T., Takeuchi, D., Osakada, K., Macromolecules 43, 7998 (2010).CrossRefGoogle Scholar