Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T13:03:55.211Z Has data issue: false hasContentIssue false

Three-dimensional electrodes and battery architectures

Published online by Cambridge University Press:  14 July 2011

Timothy S. Arthur
Affiliation:
Toyota Research Institute of North America, Ann Arbor, MI, USA
Daniel J. Bates
Affiliation:
Colorado State University, Fort Collins, CO 80523, USA; bates@math.colostate.edu
Nicolas Cirigliano
Affiliation:
University of California, Los Angeles, CA 90095, USA; niccirig@ucla.edu
Derek C. Johnson
Affiliation:
Prieto Battery, Inc., Fort Collins, CO 80523, USA; Derek.johnston@business.colostate.edu
Peter Malati
Affiliation:
University of California, Los Angeles, CA 90095; pmalatie@ucla.edu
James M. Mosby
Affiliation:
Prieto Battery, Inc., Fort Collins, CO 80523, USA
Emilie Perre
Affiliation:
University of California, Los Angeles, CA 90095; eperre@ucla.edu
Matthew T. Rawls
Affiliation:
Prieto Battery, Inc., Fort Collins, CO 80523, USA
Amy L. Prieto
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; alprieto@lamar.colostate.edu
Bruce Dunn
Affiliation:
University of California, Los Angeles, CA 90095, USA; bdunn@ucla.edu
Get access

Abstract

Three-dimensional (3D) battery architectures have emerged as a new direction for powering microelectromechanical systems and other small autonomous devices. Although there are few examples to date of fully functioning 3D batteries, these power sources have the potential to achieve high power density and high energy density in a small footprint. This overview highlights the various architectures proposed for 3D batteries, the advances made in the fabrication of components designed for these devices, and the remaining technical challenges. Efforts directed at establishing design rules for 3D architectures and modeling are providing insight concerning the energy density and current uniformity achievable with these architectures. The significant progress made on the fabrication of electrodes and electrolytes designed for 3D batteries is an indication that a number of these battery architectures will be successfully demonstrated within the next few years.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Goodenough, J.B., Abruña, H.D., Buchanan, M.V., Basic Research Needs for Electrical Energy Storage: Report of the Basic Energy Sciences Workshop on Electrical Energy Storage (U.S. Department of Energy, Office of Basic Energy Sciences, 2007).Google Scholar
2.Sato, H., Berry, C.W., Casey, B.E., Lavella, G., Yao, Y., VandenBrooks, J.M., Maharbiz, M.M., IEEE 21st Intl. Conf. Micro Electro Mechanical Systems 2008 (MEMS 2008), pp. 164167.Google Scholar
3.Lemmerhirt, D., Wise, K., Proc. IEEE 94, 1138 (2006).CrossRefGoogle Scholar
4.Mohseni, P., Najafi, K., Eliades, S., Wang, X., IEEE Trans. 13, 263 (2005).Google Scholar
5.Johannessen, E., Wang, L., Cui, L., Tang, T.B., Ahmadian, M., Astaras, A., Reid, S.W.J., Yam, P.S., Murray, A.F., Flynn, B.W., Beaumont, S.P., Cumming, D.R.S., Cooper, J.M., IEEE Trans. Biomed. Eng. 51, 525 (2004).CrossRefGoogle Scholar
6.Roberts, M., Johns, P., Owen, J., Brandell, D., Edstrom, K., El Enany, G., Guery, C., Golodnitsky, D., Lacey, M., Lecoeur, C., Mazor, H., Peled, E., Perre, E., Shaijumon, M.M., Simon, P., Taberna, P.-L., J. Mater. Chem. (2011), in press.Google Scholar
7.Mazor, H., Golodnitsky, D., Burstein, L., Peled, E., Electrochem. Solid-State Lett. 12, A232 (2009).CrossRefGoogle Scholar
8.Whittingham, M.S., Dalton Trans. 5424 (2008).CrossRefGoogle Scholar
9.Dunn, B., Long, J.W., Rolison, D.R., Interface 17, 49 (2008).Google Scholar
10.Rolison, D.R., Long, J.W., Lytle, J.C., Fischer, A.E., Rhodes, C.P., McEvoy, T.M., Bourga, M.E., Lubers, A.M., Chem. Soc. Rev. 38, 226 (2009).CrossRefGoogle Scholar
11.Nathan, M., Golodnitsky, D., Yufit, V., Strauss, E., Ripenbein, T., Shechtman, I., Menkin, S., Peled, E., J. Microelectromech. Syst. 14, 879 (2005).CrossRefGoogle Scholar
12.Notten, P., Roozeboom, F., Niessen, R., Baggetto, L., Adv. Mater. 19, 4564 (2007).CrossRefGoogle Scholar
13.Chamran, F., Yeh, Y., Min, H.S., Dunn, B., Kim, C.J., J. Microelectromech. Syst. 16, 844 (2007).CrossRefGoogle Scholar
14.Long, J.W., Dunn, B., Rolison, D.R., White, H.S., Chem. Rev. 104, 4463 (2004).CrossRefGoogle Scholar
15.Taberna, P.L., Mitra, S., Poizot, P., Simon, P., Tarascon, J.M., Nat. Mater. 5, 567 (2006).CrossRefGoogle Scholar
16.Ergang, N.S., Fierke, M.A., Wang, Z., Smyrl, W.H., Stein, A., J. Electrochem. Soc. 154, A1135 (2007).CrossRefGoogle Scholar
17.Kotobuki, M., Suzuki, Y., Munakata, H., Kanamura, K., Sato, Y., Yamamoto, K., Yoshida, T., Electrochim. Acta 56, 1023 (2011).CrossRefGoogle Scholar
18.Long, J.W., Rolison, D.R., Acc. Chem. Res. 40, 854 (2007).CrossRefGoogle Scholar
19.Hart, R.W., White, H.S., Dunn, B., Rolison, D.R., Electrochem. Commun. 5, 120 (2003).CrossRefGoogle Scholar
20.Zadin, V., Kasemägi, H., Aabloo, A., Brandell, D., J. Power Sources 195, 6218 (2010).CrossRefGoogle Scholar
21.Nishizawa, M., Mukai, K., Kuwabata, S., Martin, C.R., Yoneyama, H., J. Electrochem. Soc. 144, 1923 (1997).CrossRefGoogle Scholar
22.Wu, M.S., Chiang, P.C.J., Lee, J.T., Lin, J.C., J. Phys. Chem. B 109, 23279 (2005).CrossRefGoogle Scholar
23.Cui, L.F., Yang, Y., Hsu, C.M., Cui, Y., Nano Lett. 9, 3370 (2009).CrossRefGoogle Scholar
24.Li, N.C., Martin, C.R., Scrosati, B., Electrochem. Solid-State Lett. 3, 316 (2000).CrossRefGoogle Scholar
25.Teixidor, G.T., Zaouk, R.B., Park, B.Y., Madou, M.J., J. Power Sources 183, 730 (2008).CrossRefGoogle Scholar
26.Cheah, S.K., Perre, E., Rooth, M., Fondell, M., Harsta, A., Nyholm, L., Boman, M., Gustafsson, T., Lu, J., Simon, P., Edstrom, K., Nano Lett. 9, 3230 (2009).CrossRefGoogle Scholar
27.Shaijumon, M.M., Perre, E., Daffos, B., Taberna, P.-L., Tarascon, J.-M., Simon, P., Adv. Mater. 22, 4978 (2010).CrossRefGoogle Scholar
28.Min, H.-S., Park, B.Y., Taherabadi, L., Wang, C., Yeh, Y., Zaouk, R., Madou, M.J., Dunn, B., J. Power Sources 178, 795 (2008).CrossRefGoogle Scholar
29.Chamran, F., Min, H.-S., Dunn, B., Kim, C.-J., IEEE 20th Int. Conf. Micro Electro Mechanical Systems 2007 (2007), pp. 871874.Google Scholar
30.Cheng, F., Tao, Z., Liang, J., Chen, J., Chem. Mater. 20, 667 (2008).CrossRefGoogle Scholar
31.Park, M.S., Kang, Y.M., Wang, G.X., Dou, S.X., Liu, H.K., Adv. Funct. Mater. 18, 455 (2008).CrossRefGoogle Scholar
32.Li, W.Y., Xu, L.N., Chen, J., Adv. Funct. Mater. 15, 851 (2005).CrossRefGoogle Scholar
33.Lan, Y., Gao, X.P., Zhu, H.Y., Zheng, Z.F., Yan, T.Y., Wu, F., Ringer, S.P., Song, D.Y., Adv. Funct. Mater. 15, 1310 (2005).CrossRefGoogle Scholar
34.Li, N.C., Martin, C.R., J. Electrochem. Soc. 148, A164 (2001).CrossRefGoogle Scholar
35.Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y., Nat. Nanotechnol. 3, 31 (2008).CrossRefGoogle Scholar
36.Chen, J., Cheng, F., Acc. Chem. Res. 42, 713 (2009).CrossRefGoogle Scholar
37.Bruce, P.G., Scrosati, B., Tarascon, J.M., Angew. Chem. Int. Ed. 47, 2 (2008).CrossRefGoogle Scholar
38.Che, G., Jirage, K.B., Fisher, E.R., Martin, C.R., Yoneyama, H., J. Electrochem. Soc. 144, 4296 (1997).CrossRefGoogle Scholar
39.Winter, M., Besenhard, J.O., Electrochim. Acta 45, 31 (1999).CrossRefGoogle Scholar
40.Rhodes, C.P., Long, J.W., Doescher, M.S., Dening, B.M., Rolison, D.R., J. Non-Cryst. Solids 350, 73 (2004).CrossRefGoogle Scholar
41.Agrawal, R.C., Pandey, G.P., J. Phys. D: Appl. Phys. 41, 223001 (2008).CrossRefGoogle Scholar
42.Lee, S.W., Yabuuchi, N., Gallant, B.M., Chen, S., Kim, B.S., Hammond, P.T., Shao-Horn, Y., Nat. Nanotechnol. 5, 531 (2010).CrossRefGoogle Scholar
43.Bohnke, O., Frand, G., Rezrazi, M., Rousselot, C., Truche, C., Solid State Ionics 66, 105 (1993).CrossRefGoogle Scholar
44.Gowda, S.R., Reddy, A.L.M., Shaijumon, M.M., Zhan, X., Ci, L., Ajayan, P.M., Nano Lett. 11, 101 (2011).CrossRefGoogle Scholar
45.Rhodes, C.P., Long, J.W., Doescher, M.S., Fontanella, J.J., Rolison, D.R., J. Phys. Chem. B 108, 13079 (2004).CrossRefGoogle Scholar
46.Rhodes, C.P., Long, J.W., Rolison, D.R., Electrochem. Solid-State Lett. 8, A579 (2005).CrossRefGoogle Scholar
47.El-Enany, G., Lacey, M.J., Johns, P.A., Owen, J.R., Electrochem. Commun. 11, 2320 (2009).CrossRefGoogle Scholar
48.Rhodes, C.P., Long, J.W., Pettigrew, K.A., Stroud, R.M., Rolison, D.R., Nanoscale 3 (2011); DOI:10.1039/c0nr00731e.CrossRefGoogle ScholarPubMed
49.Lytle, J.C., Wallace, J.M., Sassin, M.B., Barrow, A.J., Long, J.W., Dysart, J.L., Renninger, C.H., Saunders, M.P., Brandell, N.L., Rolison, D.R., Energy Environ. Sci. 4 (2011); DOI: 10.1039/c0ee00351d.CrossRefGoogle Scholar