Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T17:51:43.407Z Has data issue: false hasContentIssue false

Thermionic electron emission from single carbon nanostructures and its applications in vacuum nanoelectronics

Published online by Cambridge University Press:  10 July 2017

Xianlong Wei
Affiliation:
Department of Electronics, Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, China; weixl@pku.edu.cn
Qing Chen
Affiliation:
Department of Electronics, Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, China; qingchen@pku.edu.cn
Lian-Mao Peng
Affiliation:
Department of Electronics, Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, China; lmpeng@pku.edu.cn
Get access

Abstract

Nanoscale electron sources with high electron-emitting performance are of great interest in vacuum nanoelectronics. Resembling traditional thermionic emission sources based on a hot tungsten filament, a hot carbon nanotube or graphene can function as a nanoscale electron source because of its excellent thermal stability and electrical conductivity. In this article, studies of thermionic emission from single hot carbon nanostructures are overviewed, emphasizing their differences in physics from macroscopic thermionic emission as well as potential applications in vacuum nanoelectronics. Due to their low dimensionality, nanoscale size, and nonequilibrium electron distribution, Richardson’s Law, which governs thermionic emission from macroscopic metals, breaks down in the case of thermionic emission from single carbon nanostructures, and an internal electric field in a carbon nanostructure can contribute directly to its thermionic emission. Graphene-based nanoscale thermionic emission sources, source arrays, and vacuum transistors have been fabricated and demonstrated to exhibit the advantages compared to those based on field emission. The advances imply the promise of realizing high-performance nanoscale electron sources and vacuum electronic devices based on thermionic emission.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Spindt, C.A., J. Appl. Phys. 39, 3504 (1968).Google Scholar
Spindt, C.A., Brodie, I., Humphrey, L., Westerberg, E.R., J. Appl. Phys. 47, 5248 (1976).Google Scholar
She, J.C., Xu, N.S., Huq, S.E., Deng, S.Z., Chen, J., Appl. Phys. Lett. 81, 4257 (2002).Google Scholar
Huq, S.E., Chen, L., Prewett, P.D., Microelectron. Eng. 27, 95 (1995).Google Scholar
Pescini, L., Tilke, A., Blick, R.H., Lorenz, H., Kotthaus, J.P., Eberhardt, W., Kern, D., Adv. Mater. 13, 1780 (2001).Google Scholar
Bower, C.A., Gilchrist, K.H., Piascik, J.R., Stoner, B.R., Natarajan, S., Parker, C.B., Wolter, S.D., Glass, J.T., Appl. Phys. Lett. 90, 124102 (2007).Google Scholar
Han, J.-W., Oh, J.S., Meyyappan, M., Appl. Phys. Lett. 100, 213505 (2012).Google Scholar
Srisonphan, S., Jung, Y.S., Kim, H.K., Nat. Nanotechnol. 7, 504 (2012).Google Scholar
Choi, W.B., Chung, D.S., Kang, J.H., Kim, H.Y., Jin, Y.W., Han, I.T., Lee, Y.H., Jung, J.E., Lee, N.S., Park, G.S., Kim, J.M., Appl. Phys. Lett. 75, 3129 (1999).Google Scholar
Liu, P., Wei, Y., Liu, K., Liu, L., Jiang, K.L., Fan, S.S., Nano Lett. 12, 2391 (2012).Google Scholar
Parmee, R.J., Collins, C.M., Milne, W.I., Cole, M.T., Nano Converg. 1, 34 (2014).Google Scholar
Redhead, P.A., J. Vac. Sci. Technol. A 16, 1394 (1998).Google Scholar
Wei, X.L., Golberg, D., Chen, Q., Bando, Y., Peng, L.M., Nano Lett. 11, 734 (2011).Google Scholar
Wei, X.L., Golberg, D., Chen, Q., Bando, Y., Peng, L.-M., Phys. Rev. B Condens. Matter 84, 195462 (2011).Google Scholar
Wei, X.L., Wang, S., Chen, Q., Peng, L.M., Sci. Rep. 4, 5102 (2014).Google Scholar
Cox, D.C., Forrest, R.D., Smith, P.R., Silva, S.R.P., Appl. Phys. Lett. 85, 2065 (2004).Google Scholar
Wei, X.L., Bando, Y., Golberg, D., ACS Nano 6, 705 (2012).Google Scholar
Liu, P., Wei, Y., Jiang, K.L., Sun, Q., Zhang, X.B., Fan, S.S., Phys. Rev. B Condens. Matter 73, 235412 (2006).CrossRefGoogle Scholar
Wei, Y., Jiang, K.L., Feng, X.F., Liu, P., Liu, L., Fan, S.S., Phys. Rev. B Condens. Matter 76, 045423 (2007).Google Scholar
Liu, P., Sun, Q., Zhu, F., Liu, K., Jiang, K.L., Liu, L., Li, Q.Q., Fan, S.S., Nano Lett. 8, 647 (2008).Google Scholar
Yaghoobi, P., Moghaddam, M.V., Nojeh, A., Solid State Commun. 151, 1105 (2011).Google Scholar
Moghaddam, M.V., Yaghoobi, P., Nojeh, A., Appl. Phys. Lett. 101, 253110 (2012).Google Scholar
Yaghoobi, P., Moghaddam, M.V., Nojeh, A., AIP Adv. 2, 042139 (2012).Google Scholar
Li, Z.J., Bai, B., Li, C., Dai, Q., Carbon 96, 641 (2016).Google Scholar
Zhu, F., Lin, X.Y., Liu, P., Jiang, K.L., Wei, Y., Wu, Y., Wang, J.P., Fan, S.S., Nano Res. 7, 553 (2014).Google Scholar
Starodub, E., Bartelt, N.C., McCarty, K.F., Appl. Phys. Lett. 100, 181604 (2012).Google Scholar
Richardson, O.W., Phys. Rev. 23, 153 (1924).Google Scholar
Fowler, R.H., Proc. R. Soc. Lond. A 117, 549 (1928).Google Scholar
Liang, S.-J., Ang, L.K., Phys. Rev. Appl. 3, 014002 (2015).Google Scholar
Wei, X.L., Chen, Q., Peng, L.M., AIP Adv. 3, 042130 (2013).Google Scholar
Wu, G.T., Wei, X.L., Gao, S., Chen, Q., Peng, L.M., Nat. Commun. 7, 11513 (2016).Google Scholar
Wu, G.T., Wei, X.L., Zhang, Z.Y., Chen, Q., Peng, L.M., Adv. Funct. Mater. 25, 5972 (2015).Google Scholar
Xia, F.N., Farmer, D.B., Lin, Y.-M., Avouris, P., Nano Lett. 10, 715 (2010).Google Scholar