Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T13:51:35.270Z Has data issue: false hasContentIssue false

Single-crystal growth of organic semiconductors

Published online by Cambridge University Press:  14 January 2013

Hui Jiang
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore; Jianghui@ntu.edu.sg
Christian Kloc
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore; Ckloc@ntu.edu.sg
Get access

Abstract

Organic single crystals are an established part of the emerging field of organic optoelectronics, because they provide an ideal platform for the studies of the intrinsic physical properties of organic semiconductors. As organic crystals have low melting temperatures and high vapor pressures and are soluble in numerous organic solvents, both solution and gas-phase methods can be used for crystal growth. The nature of the individual molecules and the interactions between molecules determine which growth method is preferred for particular materials. Organic semiconductors with very low decomposition or melting temperatures can be grown from solutions, whereas semiconductors with high vapor pressures can be grown using physical vapor transport methods. High-quality crystals can be obtained using both methods. Crystal growth and crystal engineering of multicomponent organic compounds are emerging fields that can provide a variety of new materials with different physical properties. The growth of large crystals from the melt by zone melting, the Bridgman, or the Czochralski methods has been used to produce stable materials used in wafer manufacturing or large scintillator detectors. In this article, single-crystal growth methods for organic semiconductors are discussed with the aim of preparing high-quality specimens for determination of the basic properties of organic semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, C., Dong, H., Hu, W., Liu, Y., Zhu, D., Chem. Rev. 112, 2208 (2012).CrossRefGoogle Scholar
Ishiguro, T., Yamaji, K., Saito, G., Organic Superconductors, 2nd ed. (Springer-Verlag, Berlin, Heidelberg, Germany, 1998).CrossRefGoogle Scholar
Klauk, H., Chem. Soc. Rev. 39, 2643 (2010).CrossRefGoogle Scholar
Kulkarni, A.P., Tonzola, C.J., Babel, A., Jenekhe, S.A., Chem. Mater. 16, 4556 (2004).CrossRefGoogle Scholar
Hoppe, H., Sariciftci, N.S., J. Mater. Res. 19, 1924 (2004).CrossRefGoogle Scholar
Horowitz, G., Hajlaoui, M.E., Adv. Mater. 12, 1046 (2000).3.0.CO;2-W>CrossRefGoogle Scholar
Kalb, W.L., Meier, F., Mattenberger, K., Batlogg, B., Phys. Rev. B 76, 184112 (2007).CrossRefGoogle Scholar
Chapman, B.D., Checco, A., Pindak, R., Siegrist, T., Kloc, C., J. Cryst. Growth 290, 479 (2006).CrossRefGoogle Scholar
Rep, D.B.A., Morpurgo, A.F., Sloof, W.G., Klapwijk, T.M., J. Appl. Phys. 93, 2082 (2003).CrossRefGoogle Scholar
de Boer, R.W.I., Gershenson, M.E., Morpurgo, A.F., Podzorov, V., Phys. Stat. Sol. (a) 201, 1302 (2004).CrossRefGoogle Scholar
Gershenson, M.E., Podzorov, V., Morpurgo, A.F., Rev. Mod. Phys. 78, 973 (2006).CrossRefGoogle Scholar
Jiang, L., Dong, H., Hu, W., J. Mater. Chem. 20, 4994 (2010).CrossRefGoogle Scholar
Li, R., Hu, W., Liu, Y., Zhu, D., Acc. Chem. Res. 43, 529 (2010).CrossRefGoogle Scholar
Yang, X., Wang, L., Wang, C., Long, W., Shuai, Z., Chem. Mater. 20, 3205 (2008).CrossRefGoogle Scholar
Podzorov, V., Menard, E., Borissov, A., Kiryukhin, V., Rogers, J.A., Gershenson, M.E., Phys. Rev. Lett. 93, 086602 (2004).CrossRefGoogle Scholar
Sundar, V.C., Zaumseil, J., Podzorov, V., Menard, E., Willett, R.L., Someya, T., Gershenson, M.E., Rogers, J.A., Science 303, 1644 (2004).CrossRefGoogle Scholar
Najafov, H., Lee, B., Zhou, Q., Feldman, L.C., Podzorov, V., Nat. Mater. 9, 938 (2010).CrossRefGoogle Scholar
Jiang, H., Yang, X., Cui, Z., Liu, Y., Li, H., Hu, W., Appl. Phys. Lett. 94, 123308 (2009).CrossRefGoogle Scholar
Hannewald, K., Bobbert, P.A., Phys. Rev. B 69, 075212 (2004).CrossRefGoogle Scholar
Ortmann, F., Bechstedt, F., Hannewald, K., Phys. Status Solidi (b) 248, 511 (2011).CrossRefGoogle Scholar
Jiang, L., Hu, W., Wei, Z., Xu, W., Meng, H., Adv. Mater. 21, 3649 (2009).CrossRefGoogle ScholarPubMed
Tang, Q., Tong, Y., Hu, W., Wan, Q., Bjørnholm, T., Adv. Mater. 21, 4234 (2009).CrossRefGoogle Scholar
Jiang, H., Zhao, H., Zhang, K.K., Chen, X., Kloc, C., Hu, W., Adv. Mater. 23, 5075 (2011).CrossRefGoogle Scholar
Briseno, A.L., Mannsfeld, S.C.B., Ling, M.M., Liu, S., Tseng, R.J., Reese, C., Roberts, M.E., Yang, Y., Wudl, F., Bao, Z., Nature 444, 913 (2006).CrossRefGoogle Scholar
Yamao, T., Miki, T., Akagami, H., Nishimoto, Y., Ota, S., Hotta, S., Chem. Mater. 19, 3748 (2007).CrossRefGoogle Scholar
Jiang, L., Fu, Y., Li, H., Hu, W., J. Am. Chem. Soc. 130, 3937 (2008).CrossRefGoogle Scholar
Jiang, L., Dong, H., Meng, Q., Li, H., He, M., Wei, Z., He, Y., Hu, W., Adv. Mater. 23, 2059 (2011).CrossRefGoogle Scholar
Jiang, H., Yang, X., Wang, E., Fu, Y., Liu, Y., Li, H., Cui, Z., Liu, Y., Hu, W., Synth. Met. 161, 136 (2011).CrossRefGoogle Scholar
Mas-Torrent, M., Durkut, M., Hadley, P., Ribas, X., Rovira, C., J. Am. Chem. Soc. 126, 984 (2004).CrossRefGoogle Scholar
Jiang, H., Yang, X., Cui, Z., Liu, Y., Li, H., Hu, W., Liu, Y., Zhu, D., Appl. Phys. Lett. 91, 123505 (2007).CrossRefGoogle Scholar
Pfattner, R., Mas-Torrent, M., Bilotti, I., Brillante, A., Milita, S., Liscio, F., Biscarini, F., Marszalek, T., Ulanski, J., Nosal, A., Gazicki-Lipman, M., Leufgen, M., Schmidt, G., Molenkamp, L.W., Laukhin, V., Veciana, J., Rovira, C., Adv. Mater. 22, 4198 (2010).CrossRefGoogle Scholar
Jiang, H., Zhang, K.K., Ye, Y., Wei, F., Hu, P., Guo, J., Liang, C., Chen, X., Zhao, Y., McNeil, L.E., Hu, W., Kloc, C., Small 8 (2012); doi 10.1002/smll.201202390.CrossRefGoogle Scholar
Kim, D.H., Han, J.T., Park, Y.D., Jang, Y., Cho, J.H., Hwang, M., Cho, K., Adv. Mater. 18, 719 (2006).CrossRefGoogle Scholar
Matsukawa, T., Yoshimura, M., Sasai, K., Uchiyama, M., Yamagishi, M., Tominari, Y., Takahashi, Y., Takeya, J., Kitaoka, Y., Mori, Y., Sasaki, T., J. Cryst. Growth 312, 310 (2010).CrossRefGoogle Scholar
Johannsen, I., Groth-Andersen, L., Nielsen, K.F., J. Cryst. Growth 51, 627 (1981).CrossRefGoogle Scholar
Kim, D.H., Lee, D.Y., Lee, H.S., Lee, W.H., Kim, Y.H., Han, J.I., Cho, K., Adv. Mater. 19, 678 (2007).CrossRefGoogle Scholar
Miyahara, T., Shimizu, M., J. Cryst. Growth 226, 130 (2001).CrossRefGoogle Scholar
Field, C.N., Hamley, P.A., Webster, J.M., Gregory, D.H., Titman, J.J., Poliakoff, M., J. Am. Chem. Soc. 122, 2480 (2000).CrossRefGoogle Scholar
Piper, W.W., Polich, S.J., Appl. Phys. Lett. 32, 1278 (1961).Google Scholar
Kloc, C., Simpkins, P.G., Siegrist, T., Laudise, R.A., J. Cryst. Growth 182, 416 (1997).CrossRefGoogle Scholar
Laudise, R.A., Kloc, C., Simpkins, P.G., Siegrist, T., J. Cryst. Growth 187, 449 (1998).CrossRefGoogle Scholar
Käfer, D., Witte, G., Phys. Chem. Chem. Phys. 7, 2850 (2005).CrossRefGoogle Scholar
Park, S.-W., Hwang, J.M., Choi, J.-M., Hwang, D.K., Oh, M.S., Kim, J.H., Im, S., Appl. Phys. Lett. 90, 153512 (2007).CrossRefGoogle Scholar
Podzorov, V., Sysoev, S.E., Loginova, E., Pudalov, V.M., Gershenson, M.E., Appl. Phys. Lett. 83, 3504 (2003).CrossRefGoogle Scholar
Jiang, H., Tan, K.J., Zhang, K.K., Chen, X., Kloc, C., J. Mater. Chem. 21, 4771 (2011).CrossRefGoogle Scholar
Tang, Q., Jiang, L., Tong, Y., Li, H., Liu, Y., Wang, Z., Hu, W., Liu, Y., Zhu, D., Adv. Mater. 20, 2947 (2008).CrossRefGoogle Scholar
Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M., Springer Handbook of Crystal Growth, 1st ed. (Springer-Verlag, Berlin Heidelberg, Germany, 2010).CrossRefGoogle Scholar
Feigelson, R.S., Route, R.K., Kao, T.-M., J. Cryst. Growth 72, 585 (1985).CrossRefGoogle Scholar
Selvakumar, S., Sivaji, K., Arulchakkaravarthi, A., Balamurugan, N., Sankar, S., Ramasamy, P., J. Cryst. Growth 282, 370 (2005).CrossRefGoogle Scholar
Probst, K.H., Karl, N., Phys. Status Solidi (a) 27, 499 (1975).CrossRefGoogle Scholar
McArdle, B.J., Sherwood, J.N., Damask, A.C., J. Cryst. Growth 22, 193 (1974).CrossRefGoogle Scholar
Inokuchi, H., Bull. Chem. Soc. Jpn. 29, 131 (1956).CrossRefGoogle Scholar
Niemax, J., Pflaum, J., Appl. Phys. Lett. 87, 241921 (2005).CrossRefGoogle Scholar
Arulchakkaravarthi, A., Santhanaraghavan, P., Ramasamy, P., J. Cryst. Growth 224, 89 (2001).CrossRefGoogle Scholar
Bridgman, P.W., Proc. Am. Acad. Arts Sci. 60, 305 (1925).CrossRefGoogle Scholar
Brissaud, M., Dolin, C., Leduigou, J., McArdle, B.S., Sherwood, J.N., J. Cryst. Growth 38, 134 (1977).CrossRefGoogle Scholar
Tripathi, A.K., Heinrich, M., Siegrist, T., Pflaum, J., Adv. Mater. 19, 2097 (2007).CrossRefGoogle Scholar
Karl, N., Crystals Growth, Properties, and Applications, 1st ed. (Springer-Verlag, Berlin, Heidelberg, Germany, 1980).Google Scholar
Hong, I.H., Tan, K.J., Toh, M., Jiang, H., Zhang, K., Kloc, C., J. Cryst. Growth (2012); doi 10.1016/j.jcrysgro.2012.10.002.Google Scholar
Bleay, J., Hooper, R.M., Narang, R.S., Sherwood, J.N., J. Cryst. Growth 43, 589 (1978).CrossRefGoogle Scholar
Arivanandhan, M., Sankaranarayanan, K., Sanjeeviraja, C., Arulchakkaravarthi, A., Ramasamy, P., J. Cryst. Growth 281, 596 (2005).CrossRefGoogle Scholar
Tickle, I.J., Prout, C.K., J. Chem. Soc. 6, 720 (1973).Google Scholar
Truong, K.D., Bandrauk, A.D., Chem. Phys. Lett. 44, 232 (1976).CrossRefGoogle Scholar