Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T23:58:51.618Z Has data issue: false hasContentIssue false

Silicon-Based Microchemical Systems: Characteristics and Applications

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Microfabrication techniques and scale-up by replication promise to transform classical batch-wise chemical laboratory procedures into integrated systems capable of providing new understanding and control of fundamental processes. Such integrated microchemical systems would enable rapid, continuous discovery and development of new products with the use of fewer resources and the generation of less waste. Additional opportunities exist for on-demand and on-site synthesis, with perhaps the first applications emerging in portable energy sources based on the conversion of hydrocarbons to hydrogen for miniaturized fuel cells.

Microchemical systems can be realized in a wide range of materials including stainless steel, glass, ceramics, silicon, and polymers. The high mechanical strength, excellent temperature characteristics, and good chemical compatibility of silicon combined with the existing fabrication infrastructure for microelectromechanical systems (MEMS) offer advantages in fabricating chemical microsystems that are compatible with strong solvents and operate at elevated temperatures and pressures. Furthermore, silicon-based microsensors for flow, pressure, and temperature can readily be integrated into the systems.

Microsystems for broad chemical applications should be discovery tools that can easily be applied by chemists and materials scientists while also having a convincing “scale-out” to at least small production levels. The interplay of both these capabilities is important in making microreaction technology successful. Perhaps the largest impact of microchemical systems will ultimately be the ability to explore reaction conditions and chemistry at conditions that are otherwise difficult to establish in the laboratory. Case studies are selected to illustrate microfluidic applications in which silicon adds advantages, specifically, integration of physical sensors and infrared spectroscopy, highthroughput experimentation in moisture-sensitive organic synthesis, controlled synthesis of nanoparticles (quantum dots), multiphase and heterogeneous catalytic reactions at elevated temperatures and pressures, and thermal management in the conversion of hydrocarbons to hydrogen.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ehrfeld, W., Hessel, V., and Lowe, H., Microreactors: New Technology for Modern Chemistry (Wiley-VCH, Weinheim, Germany, 2000).CrossRefGoogle Scholar
2Schwalbe, T., Autze, V., Hohmann, M., and Stirner, W., Org. Proc. Res. Dev. 8 (2004) p. 440.Google Scholar
3Hessel, V., Hardt, S., and Lowe, H., Chemical Micro Process Engineering: Fundamentals, Modelling and Reactions (Wiley-VCH, Weinheim, Germany, 2004).CrossRefGoogle Scholar
4Jahnisch, K., Hessel, V., Lowe, H., and Baerns, M., Ange w. Chem. Int. Ed. 43 (2004) p. 406.CrossRefGoogle Scholar
5Fletcher, P.D.I.Haswell, S.J.Pombo-Villar, E., Warrington, B.H.Watts, P., Wong, S.Y.F. and Zhang, X.L.Tetrahedron 58 (2002) p. 4735.Google Scholar
6Chow, A.W.AIChE J. 48 (2002) p. 1590.CrossRefGoogle Scholar
7Kikutani, Y., Horiuchi, T., Uchiyama, K., Hisamoto, H., Tokeshi, M., and Kitamori, T., Lab Chip 3 (2003) p. 51.Google Scholar
8Knitter, R., Gohring, D., Risthaus, P., and Hausselt, J., Microsys. Technol. 7 (2001) p. 85.CrossRefGoogle Scholar
9Jensen, K.F.Chem. Eng. Sci. 56 (2001) p. 293.CrossRefGoogle Scholar
10Xia, Y.N. and Whitesides, G.M.Angew. Chem. Int. Ed. 37 (1998) p. 551.Google Scholar
11McDonald, J.C. and Whitesides, G.M.Acc. Chem. Res. 35 (2002) p. 491.CrossRefGoogle Scholar
12Guber, A.E.Heckele, M., Herrmann, D., Muslija, A., Saile, V., Eichhorn, L., Gietzelt, T., Hoffmann, W., Hauser, P.C.Tanyanyiw, J., Gerlach, A., Gottschlich, N., and Knebel, G., Chem. Eng. J. 101 (2004) p. 447.CrossRefGoogle Scholar
13Rolland, J.P.Dam, R.M. Van, Schorzman, D.A.Quake, S.R. and Desimone, J.M.J. Amer. Chem. Soc. 126 (2004) p. 2322.CrossRefGoogle Scholar
14Tummala, R.R.Proc. IEEE 80 (1992) p. 1924.Google Scholar
15Pu, Q.-S., Luttge, R., Gardeniers, H.J.G.E. and Berg, A.V.D.Electrophoresis 24 (2003) p. 162.CrossRefGoogle ScholarPubMed
16Whitesides, G.M.Ostuni, E., Takayama, S., Jiang, X.Y. and Ingber, D.E.Annu. Rev. Biomed. Eng. 3 (2001) p. 335.Google Scholar
17Unger, M.A.Chou, H.P.Thorsen, T., Scherer, A., and Quake, S.R.Science 288 (2000) p. 113.Google Scholar
18Thorsen, T., Maerkl, S.J. and Quake, S.R.Science 298 (2002) p. 580.CrossRefGoogle Scholar
19Jackman, R.J.Floyd, T.M.Ghodssi, R., Schmidt, M.A. and Jensen, K.F.J. Micromech. Microeng. 11 (2001) p. 263.CrossRefGoogle Scholar
20Wise, K.D.Proc. IEEE 86 (1998) p. 1531.Google Scholar
21Ayon, A.A.Braff, R., Lin, C.C.Sawin, H.H. and Schmidt, M.A.J. Electrochem. Soc. 146 (1999) p. 339.CrossRefGoogle Scholar
22Madou, M.J.Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. (CRC Press, Boca Raton, Fla., 2002).Google Scholar
23Mehra, A.,Zhang, X., Ayon, A.A.Waitz, I.A.Schmidt, M.A. and Spadaccini, C.M.J. Microelectromech. Sys. 9 (2000) p. 517.CrossRefGoogle Scholar
24Mas, N. De, Günther, A., Schmidt, M.A. and , K.F. JensenInd. Eng. Chem. Res. 42 (2003) p. 698.CrossRefGoogle Scholar
25Arana, L.R.Schaevitz, S.B.Franz, A.J.Schmidt, M.A. and Jensen, K.F.J. Microelectromech. Sys. 12 (2003) p. 600.CrossRefGoogle Scholar
26Srinivasan, R., Hsing, I.-M., Berger, P.E.Jensen, K.F.Firebaugh, S.L.Schmidt, M.A.Harold, M.P.Lerou, J.J. and Ryley, J.F.AIChE J. 43 (1997) p. 3059.CrossRefGoogle Scholar
27Losey, M.W.Jackman, R.J.Firebaugh, S.L.Schmidt, M.A. and Jensen, K.F.J. Microelectromech. Sys. 11 (2002) p. 709.CrossRefGoogle Scholar
28Drott, J.,Lindstrom, K..,Rosengren, L., andLaurell, T.., J. Micromech. Microeng. 7 (1997) p. 14.Google Scholar
29Fredrickson, C.K. and Fan, Z.H.Lab Chip 4 (2004) p. 526.CrossRefGoogle Scholar
30Ratner, D.M.Murphy, E.R.Jhunjhunwala, M., Snyder, D.A.Jensen, K.F. and Seeberger, P.H.Chem. Commun. 5 (2005) p. 578.CrossRefGoogle Scholar
31London, A.P.Ayon, A.A.Epstein, A.H.Spearing, S.M.Harrison, T., Peles, Y., and Kerrebrock, J.L.Sens. Actuators, A 92 (2001) p. 351.CrossRefGoogle Scholar
32Garcia-Egido, E., Spikmans, V., Wong, S.Y.F. and Warrington, B.H.Lab Chip 3 (2003) p. 73.Google Scholar
33Senturia, S.D.Microsystem Design (Kluwer Academic, Boston, 2001).CrossRefGoogle Scholar
34Kraus, T., Günther, A., Mas, N. De, Schmidt, M.A. and Jensen, K.F.Exp. Fluids 36 (2004) p. 819.Google Scholar
35Mas, N. De, Günther, A.,Kraus, T., Schmidt, M.A. and Jensen, K.F.Ind. Eng. Chem. Res. (2005) p. 8997.Google Scholar
36Firebaugh, S.L.Jensen, K.F. and Schmidt, M.A.J. Microelectromech. Syst. 7 (1998) p. 128.Google Scholar
37Floyd, T.M.Schmidt, M.A. and Jensen, K.F.Ind. Eng. Chem. Res. 44 (2005) p. 2351.CrossRefGoogle Scholar
38Quiram, D.J.Hsing, I.M.Franz, A.J.Jensen, K.F. and Schmidt, M.A.Chem. Eng. Sci. 55 (2000) p. 3065.CrossRefGoogle Scholar
39Lopeandia, A.F.Cerdo, L.L.Clavaguera-Mora, M.T., Arana, L.R.Jensen, K.F.Munoz, F.J. and Rodriguez-Viejo, J., Rev. Sci. Instrum. 76 065104/1 (2005).CrossRefGoogle Scholar
40Vilkner, T.,Janasek, D., andManz, A., Anal. Chem. 76 (2004) p. 3373.CrossRefGoogle Scholar
41Auroux, P.A.Iossifidis, D., Reyes, D.R. and A. Manz, Anal. Chem. 74 (2002) p. 2637.Google Scholar
42Reyes, D.R.Iossifidis, D., Auroux, P.A. and Manz, A., Anal. Chem. 74 (2002) p. 2623.CrossRefGoogle Scholar
43Lu, H., Schmidt, M.A. and Jensen, K.F.Lab Chip 1 (2001) p. 22.CrossRefGoogle Scholar
44Firebaugh, S.L.Jensen, K.F. and Schmidt, M.A.J. Microelectromech. Syst. 10 (2001) p. 232.CrossRefGoogle Scholar
45Firebaugh, S.L.Jensen, K.F. and Schmidt, M.A.J. Appl. Phys. 92 (2002) p. 1555.CrossRefGoogle Scholar
46Herzig-Marx, R., Queeney, K.T.Jackman, R.J.Schmidt, M.A. and Jensen, K.F.Anal. Chem. 76 (2004) p. 6476.CrossRefGoogle Scholar
47Grabarnick, M. andZamir, S., Org. Process Res. Dev. 7 (2003) p. 237.CrossRefGoogle Scholar
48Seeberger, P.H. and Werz, D.B.Nat. Rev. Drug Discov. 4 (2005) p. 751.Google Scholar
49Ottino, J.M. andWiggins, S., Philos. Trans. R. Soc. Lond. A 362 (2004) p. 923.CrossRefGoogle Scholar
50Stroock, A.D. S.Dertinger, K.W.Ajdari, A.,Mezic, I., Stone, H.A. and Whitesides, G.M.Science 295 (2002) p. 647.Google Scholar
51Shestopalov, I., Tice, J.D. and Ismagilov, R.F.Lab Chip 4 (2004) p. 316.Google Scholar
52Song, H., Tice, J.D. and Ismagilov, R.F.Angew. Chem. Int. Ed. 42 (2003) p. 768.CrossRefGoogle Scholar
53Gunther, A.,Jhunjhunwala, M.,Thalmann, M., Schmidt, M.A. and Jensen, K.F.Langmuir 21 (2005) p. 1547.CrossRefGoogle Scholar
54Gunther, A., Khan, S.A.Thalmann, M., Trachsel, F., and Jensen, K.F.Lab Chip 4 (2004) p. 278.Google Scholar
55B.Yen, K.H.Gunther, A., Schmidt, M.A.Jensen, K.F. and Bawendi, M.G.Angew. Chem. Int. Ed. 44 (2005) p. 5447.CrossRefGoogle Scholar
56Ajmera, S.K.Delattre, C., Schmidt, M.A. and Jensen, K.F.J. Catal. 209 (2002) p. 401.CrossRefGoogle Scholar
57Ajmera, S.K.Delattre, C., Schmidt, M.A. and Jensen, K.F.Stud. Surf. Sci. Catal. 145 (2003) p. 97.CrossRefGoogle Scholar
58Losey, M.W.Schmidt, M.A. and Jensen, K.F.Ind. Eng. Chem. Res. 40 (2001) p. 2555.Google Scholar
59Kobayashi, J.,Mori, Y.,Okamoto, K.,Akiyama, R.,Ueno, M.,Kitamori, T., and Kobayashi, S., Science 304 (2004) p. 1305.CrossRefGoogle Scholar
60Tiggelaar, R.M.Male, P. Van, Berenschot, J.W.Gardeniers, J.G.E.Oosterbroek, R.E.Croon, M.H.J.M. De, Schouten, J.C.Berg, A. Van Den, and Elwenspoek, M.C.Sens. Actuators, A 119 (2005) p. 196.CrossRefGoogle Scholar
61Tiggelaar, R.M.Berenschot, J.W.Boer, J.H. De, Sanders, R.G.P.Gardeniers, J.G.E.Oosterbroek, R.E.Berg, A. Van Den, and Elwenspoek, M.C.Lab Chip 5 (2005) p. 326.CrossRefGoogle Scholar
62Ma, Y.H.Mardilovich, I.P. and Engwall, E.E.Annu. N.Y. Acad. Sci. 984 (2003) p. 346.CrossRefGoogle Scholar
63Franz, A.J.Jensen, K.F.Schmidt, M.A. and Firebaugh, S., U.S. Patent 6, 541, 676 (2003).Google Scholar
64Franz, A., Jensen, K.F. and Schmidt, M.A.Tech. Dig. 12th Int. Conf. Microelectromechanical Systems (Orlando, Fla., 1999) p. 382.Google Scholar
65Wilhite, B.A.Schmidt, M.A. and Jensen, K.F.Ind. Eng. Chem. Res. 43 (2004) p. 7083.Google Scholar
66Tong, H.D.Gielens, F.C.Gardeniers, J.G.E.Jansen, H.V.Berenschot, J.W.Boer, M.J. De, Boer, J.H. De, Rijn, C.J.M. Van, and Elwenspoek, M.C.J. Microelectromech. Sys. 14 (2005) p. 113.Google Scholar
67Tong, H.D.Gielens, F.C.Gardeniers, J.G.E.Jansen, H.V.Rijn, C.J.M. Van, Elwenspoek, M.C. andNijdam, W., Ind. Eng. Chem. Res. 43 (2004) p. 4182.CrossRefGoogle Scholar
68Tong, H.D.Berenschot, J.W.E.Boer, M.J. De, Gardeniers, J.G.E.Wensink, H., Jansen, H.V.Nijdam, W., Elwenspock, M.C.Gielens, E.C. and Rijn, C.J.M. Van, J. Microelectromech. Sys. 12 (2003) p. 622.CrossRefGoogle Scholar
69Quiram, D.J.Jensen, K.F.Schmidt, M.A.Ryley, J.F.Mills, P.L.Wetzel, M.D.Ashmead, J.W.Bryson, R.D.Kraus, D.J. and Stamford, A.P.2000 Solid-State Sensor and Actuator Workshop (Hilton Head, S.C., 2000) p. 166.Google Scholar