Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T15:15:59.107Z Has data issue: false hasContentIssue false

Shape-controlled carbon nanotube architectures for thermal management in aerospace applications

Published online by Cambridge University Press:  08 October 2015

Pooja Puneet
Affiliation:
Department of Physics and Astronomy, Clemson University, USA; ppuneet@g.clemson.edu
Apparao M. Rao
Affiliation:
Department of Physics and Astronomy, Clemson Nanomaterials Center, Clemson University, USA; arao@g.clemson.edu
Ramakrishna Podila
Affiliation:
Department of Physics and Astronomy, Clemson University, USA; rpodila@g.clemson.edu
Get access

Abstract

Efficient structural design and thermal management for aerospace structures demand next-generation lightweight thermally conductive and mechanically robust materials to withstand high-velocity impacts and distribute localized heat fluxes from spacecraft components. Notwithstanding the excellent mechanical, electrical, and thermal properties of individual carbon nanotubes (CNTs), bulk CNT-based composites suffer from CNT anisotropy and high interjunction resistance. We provide a brief overview of scalable methods that can tune electrical and thermal connectivity in bulk CNT composites by tuning CNT shape, intertubular bonding, and packing density. These scalable production methods are posited to open new avenues for incorporating CNTs into thermal interface materials, structural reinforcement, and auxiliary power units in the form of energy-storage devices, especially for use in aerospace applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baur, J., Silverman, E., MRS Bull. 32 (4), 328 (2007).CrossRefGoogle Scholar
Vaia, R.A., Proc. SPIE 8373, 837324 (2012).Google Scholar
Balandin, A.A., Nat. Mater. 10, 569 (2011).CrossRefGoogle Scholar
Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., Lau, C.N., Appl. Phys. Lett. 92, 151911 (2008).CrossRefGoogle Scholar
Choi, T.-Y., Poulikakos, D., Tharian, J., Sennhauser, U., Nano Lett. 6, 1589 (2006).CrossRefGoogle Scholar
Berber, S., Kwon, Y., Tomanek, D., Phys. Rev. Lett. 84, 4613 (2000).CrossRefGoogle Scholar
Hone, J., Whitney, M., Piskoti, C., Zettl, A., Phys. Rev. B Condens. Matter 59, R2514 (1999).CrossRefGoogle Scholar
Ivanov, I., Puretzky, A., Eres, G., Wang, H., Pan, Z., Cui, H., Jin, R., Howe, J., Geohegan, D.B., Appl. Phys. Lett. 89, 223110 (2006).CrossRefGoogle Scholar
Kim, P., Shi, L., Majumdar, A., McEuen, P.L., Phys. Rev. Lett. 87, 215502 (2001).CrossRefGoogle Scholar
Lukes, J.R., Zhong, H., J. Heat Transfer 129, 705 (2007).CrossRefGoogle Scholar
Prasher, R., Phys. Rev. B Condens. Matter 77, 075424 (2008).CrossRefGoogle Scholar
Yang, D.J., Zhang, Q., Chen, G., Yoon, S.F., Ahn, J., Wang, S.G., Zhou, Q., Wang, Q., Li, J.Q., Phys. Rev. B Condens. Matter 66, 165440 (2002).CrossRefGoogle Scholar
Han, Z., Fina, A., Prog. Polym. Sci. 36, 914 (2011).CrossRefGoogle Scholar
Arcila-Velez, M.R., Zhu, J., Childress, A., Karakaya, M., Podila, R., Rao, A.M., Roberts, M.E., Nano Energy 8, 9 (2014).CrossRefGoogle Scholar
Njuguna, J., Pielichowski, K., Adv. Eng. Mater. 5, 769 (2003).CrossRefGoogle Scholar
Zhang, H.L., Sharma, P., Johnson, H.T., Phys. Rev. B Condens. Matter 75, 155319 (2007).CrossRefGoogle Scholar
Yang, K., He, J., Puneet, P., Su, Z., Skove, M.J., Gaillard, J., Tritt, T.M., Rao, A.M., J. Phys. Condens. Matter 22, 334215 (2010).CrossRefGoogle Scholar
Yang, K., He, J., Su, Z., Reppert, J.B., Skove, M.J., Tritt, T.M., Rao, A.M., Carbon 48, 756 (2010).CrossRefGoogle Scholar
Hone, J., Llaguno, M.C., Nemes, N.M., Johnson, A.T., Fischer, J.E., Walters, D.A., Casavant, M.J., Schmidt, J., Smalley, R.E., Appl. Phys. Lett. 77, 666 (2000).CrossRefGoogle Scholar
Wang, D., Song, P., Liu, C., Wu, W., Fan, S., Nanotechnology 19, 075609 (2008).CrossRefGoogle Scholar
Krasheninnikov, A.V., Nordlund, K., Keinonen, J., Banhart, F., Phys. Rev. B 66, 245403 (2002).CrossRefGoogle Scholar
Terrones, M., Terrones, H., Banhart, F., Charlier, J.-C., Ajayan, P.M., Science 288 (5469), 1226 (2000).CrossRefGoogle Scholar
Puneet, P., Podila, R., Zhu, S., Skove, M.J., Tritt, T.M., He, J., Rao, A.M., Adv. Mater. 25, 1033 (2013).CrossRefGoogle Scholar
Puneet, P., Podila, R., Karakaya, M., Zhu, S., He, J., Tritt, T.M., Dresselhaus, M.S., Rao, A.M., Sci. Rep. 3, 3212 (2013).CrossRefGoogle Scholar
Saini, D., Behlow, H., Podila, R., Dickel, D., Pillai, B., Skove, M.J., Serkiz, S.M., Rao, A.M., Sci. Rep. 4, 4 (2014).CrossRefGoogle Scholar
Akagi, K., Tamura, R., Tsukada, M., Itoh, S., Ihara, S., Phys. Rev. Lett. 74, 2307 (1995).CrossRefGoogle Scholar
Ihara, S., Itoh, S., Kitakami, J.I., Phys. Rev. B Condens. Matter 48, 5643 (1993).CrossRefGoogle Scholar
Wang, W., Yang, K., Gaillard, J., Bandaru, P.R., Rao, A.M., Adv. Mater. 20, 179 (2008).CrossRefGoogle Scholar
Park, S.H., Theilmann, P., Yang, K., Rao, A.M., Bandaru, P.R., Appl. Phys. Lett. 96, 2 (2010).Google Scholar
Thevamaran, R., Karakaya, M., Meshot, E.R., Fischer, A., Podila, R., Rao, A.M., Daraio, C., RSC Adv. 5, 29306 (2015).CrossRefGoogle Scholar
Karakaya, M., Saini, D., Podila, R., Skove, M.J., Rao, A.M., Thevamaran, R., Daraio, C., Adv. Eng. Mater. 7, 990 (2015).CrossRefGoogle Scholar
Kotani, T., Kawai, N., Chiba, S., Kitamoto, S., Physica E 29, 505 (2005).CrossRefGoogle Scholar
DeVol, T.A., Pruitt, L., Gallaird, J., Sexton, L., Cordaro, J., Rao, A.M., Serkiz, S.M., Nucl. Instrum. Methods Phys. Res. A 652 (1), 310 (2010).CrossRefGoogle Scholar
Kotani, T., Ueno, M., Kawai, N., Kitamoto, S., Physica E 40, 422 (2007).CrossRefGoogle Scholar
Karakaya, M., Zhu, J., Raghavendra, A.J., Podila, R., Parler, S.G. Jr., Kaplan, J., Rao, A.M., Appl. Phys. Lett. 105, 263103 (2014).CrossRefGoogle Scholar
Zhou, R., Meng, C., Zhu, F., Li, Q., Liu, C., Fan, S., Jiang, K., Nanotechnology 21, 345701 (2010).CrossRefGoogle Scholar
Chen, X., Lin, H., Chen, P., Guan, G., Deng, J., Peng, H., Adv. Mater. 26, 4444 (2014).CrossRefGoogle Scholar
Chen, T., Peng, H., Durstock, M., Dai, L., Sci. Rep. 4, 3612 (2014).CrossRefGoogle Scholar
de Villoria, R. Guzman, Hart, A. John, Wardle, B.L., ACS Nano 5 (6), 4580 (2011).Google Scholar
Huang, J., Zhang, Q., Zhao, M., Wei, F., Chin. Sci. Bull. 57 2, 157 (2012).CrossRefGoogle Scholar