Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Camposeo, A.
Puccini, N.
Fuso, F.
Allegrini, M.
Arimondo, E.
and
Tuissi, A.
2003.
Laser deposition of shape-memory alloy for MEMS applications.
Applied Surface Science,
Vol. 208-209,
Issue. ,
p.
518.
Huang, Xiangyang
Ackland, Graeme J.
and
Rabe, Karin M.
2003.
Crystal structures and shape-memory behaviour of NiTi.
Nature Materials,
Vol. 2,
Issue. 5,
p.
307.
Xu, Y.
Otsuka, K.
Toyama, N.
Yoshida, H.
Nagai, H.
and
Kishi, T.
2003.
Additive nature of recovery strains in heavily cold-worked shape memory alloys.
Scripta Materialia,
Vol. 48,
Issue. 6,
p.
803.
Jiles, D.C.
and
Lo, C.C.H.
2003.
The role of new materials in the development of magnetic sensors and actuators.
Sensors and Actuators A: Physical,
Vol. 106,
Issue. 1-3,
p.
3.
Ni, Wangyang
Cheng, Yang-Tse
and
Grummon, David S.
2003.
Microscopic superelastic behavior of a nickel-titanium alloy under complex loading conditions.
Applied Physics Letters,
Vol. 82,
Issue. 17,
p.
2811.
Sawaguchi, Tak Ahiro
Kausträter, Gregor
Yawny, Alejandro
Wagner, Martin
and
Eggeler, Gunther
2003.
Crack initiation and propagation in 50.9 at. pct Ni-Ti pseudoelastic shape-memory wires in bending-rotation fatigue.
Metallurgical and Materials Transactions A,
Vol. 34,
Issue. 12,
p.
2847.
Smith, N.A.
Antoun, G.G.
Ellis, A.B.
and
Crone, W.C.
2004.
Improved adhesion between nickel–titanium shape memory alloy and a polymer matrix via silane coupling agents.
Composites Part A: Applied Science and Manufacturing,
Vol. 35,
Issue. 11,
p.
1307.
Ma, X.-G.
and
Komvopoulos, K.
2004.
Pseudoelasticity of shape-memory titanium–nickel films subjected to dynamic nanoindentation.
Applied Physics Letters,
Vol. 84,
Issue. 21,
p.
4274.
Carroll, M.C.
Somsen, Ch.
and
Eggeler, G.
2004.
Multiple-step martensitic transformations in Ni-rich NiTi shape memory alloys.
Scripta Materialia,
Vol. 50,
Issue. 2,
p.
187.
Xu, Ya
Otsuka, K
Toyama, N
Yoshida, H
Nagai, H
and
Kishi, T
2004.
A novel technique for fabricating SMA/CFRP adaptive composites using ultrathin TiNi wires.
Smart Materials and Structures,
Vol. 13,
Issue. 1,
p.
196.
2004.
Metallography and Microstructures.
p.
165.
Frenzel, J.
Zhang, Z.
Neuking, K.
and
Eggeler, G.
2004.
High quality vacuum induction melting of small quantities of NiTi shape memory alloys in graphite crucibles.
Journal of Alloys and Compounds,
Vol. 385,
Issue. 1-2,
p.
214.
Eggeler, G.
Hornbogen, E.
Yawny, A.
Heckmann, A.
and
Wagner, M.
2004.
Structural and functional fatigue of NiTi shape memory alloys.
Materials Science and Engineering: A,
Vol. 378,
Issue. 1-2,
p.
24.
Tan, L.
and
Crone, W.C.
2004.
In situ TEM observation of two-step martensitic transformation in aged NiTi shape memory alloy.
Scripta Materialia,
Vol. 50,
Issue. 6,
p.
819.
Giessen, Bill C.
and
Hidalgo, Rafael
2005.
Encyclopedia of Inorganic and Bioinorganic Chemistry.
Otsuka, K.
and
Ren, X.
2005.
Physical metallurgy of Ti–Ni-based shape memory alloys.
Progress in Materials Science,
Vol. 50,
Issue. 5,
p.
511.
Giessen, Bill C.
and
Hidalgo, Rafael
2005.
Encyclopedia of Inorganic Chemistry.
Liang, Wuwei
Zhou, Min
and
Ke, Fujiu
2005.
Shape Memory Effect in Cu Nanowires.
Nano Letters,
Vol. 5,
Issue. 10,
p.
2039.
Sarkar, Shampa
Ren, Xiaobing
and
Otsuka, Kazuhiro
2005.
Evidence for Strain Glass in the Ferroelastic-Martensitic SystemTi50−xNi50+x.
Physical Review Letters,
Vol. 95,
Issue. 20,
Goddard, P. A.
Singleton, J.
McDonald, R. D.
Harrison, N.
Lashley, J. C.
Harima, H.
and
Suzuki, M.-T.
2005.
Catastrophic Fermi Surface Reconstruction in the Shape-Memory Alloy AuZn.
Physical Review Letters,
Vol. 94,
Issue. 11,