Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T22:28:03.378Z Has data issue: false hasContentIssue false

The role of uncertainty quantification and propagation in accelerating the discovery of electrochemical functional materials

Published online by Cambridge University Press:  11 March 2019

Gregory Houchins
Affiliation:
Carnegie Mellon University, USA; ghouchin@andrew.cmu.edu
Dilip Krishnamurthy
Affiliation:
Carnegie Mellon University, USA; dkrishn1@andrew.cmu.edu
Venkatasubramanian Viswanathan
Affiliation:
Carnegie Mellon University, USA; venkvis@cmu.edu
Get access

Abstract

Density functional theory (DFT) has proved to be exceptionally successful in rationalizing trends in activity and functionality for electrochemical functional materials. With continued increases in computing power, there has been an increased interest in “high-throughput” materials discovery and design based on a few descriptors to scan the phase space en masse for thousands of potential candidates, which could be made technologically and commercially viable. However, given fundamental accuracy limitations associated with DFT, the success of high-throughput material discovery efforts has been limited. In this review, we suggest an additional dimension to aid in high-throughput material discovery related to uncertainty quantification and propagation, which provides a more realistic picture of the likelihood of new candidate materials to improve upon known materials. We demonstrate the approach and its utility through two case studies: (1) electrocatalyst materials for their activity and selectivity for the oxygen reduction reaction, and (2) cathode materials for Li-ion batteries based on Ni-Mn-Co oxides. The ease with which uncertainty quantification and propagation can be incorporated into traditional high-throughput material discovery with almost no additional computational cost allows for its proposed wide usage.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Denotes equal contribution.

References

Jain, A., Shin, Y., Persson, K.A., Nat. Rev. Mater. 1, 15004 (2016).CrossRefGoogle Scholar
Cole, D.J., Hine, N.D.M., J. Phys. Condens. Matter 28, 393001 (2016).CrossRefGoogle Scholar
Zhang, J., Song, L., Madsen, G.K.H., Fischer, K.F.F., Zhang, W., Shi, X., Iversen, B.B., Nat. Commun. 7, 10892 (2016).CrossRefGoogle Scholar
Greeley, J., Jaramillo, T.F., Bonde, J., Chorkendorff, I., Nørskov, J.K., Nat. Mater. 5, 909 (2006).CrossRefGoogle Scholar
Wolverton, C., Siegel, D.J., Akbarzadeh, A.R., Ozoliņš, V., J. Phys. Condens. Matter 20, 064228 (2008).CrossRefGoogle Scholar
Yang, K., Setyawan, W., Wang, S., Nardelli, M.B., Curtarolo, S., Nat. Mater. 11, 614 (2012).CrossRefGoogle Scholar
Drebov, N., Martinez-Limia, A., Kunz, L., Gola, A., Shigematsu, T., Eckl, T., Gumbsch, P., Elsässer, C., New J. Phys. 15, 125023 (2013).CrossRefGoogle Scholar
Castelli, I.E., Olsen, T., Datta, S., Landis, D.D., Dahl, S., Thygesen, K.S., Jacobsen, K.W., Energy Environ. Sci. 5, 5814 (2012).CrossRefGoogle Scholar
Hohenberg, P., Kohn, W., Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
Kohn, W., Sham, L.J., Phys. Rev. 140, 1133 (1965).CrossRefGoogle Scholar
Anisimov, V.I., Solovyev, I.V., Korotin, M.A., Czyzyk, M.T., Sawatzky, G.A., Phys. Rev. B 48, 16929 (1993).CrossRefGoogle Scholar
Anisimov, V.I., Zaanen, J., Andersen, O.K., Phys. Rev. B 44, 943 (1991).CrossRefGoogle Scholar
Lejaeghere, K., Van Speybroeck, V. , Van Oost, G., Cottenier, S., Crit. Rev. Solid State Mater. Sci. 39, 1 (2014).CrossRefGoogle Scholar
Curtarolo, S., Hart, G.L.W., Nardelli, M.B., Mingo, N., Sanvito, S., Levy, O., Nat. Mater. 12, 191 (2013).CrossRefGoogle Scholar
Holdren, J., Materials Genome Initiative Strategic Plan (Tech. Rep., National Science and Technology Council OSTP, Washington, DC, 2014).Google Scholar
Frederiksen, S.L., Jacobsen, K.W., Brown, K.S., Sethna, J.P., Phys. Rev. Lett. 93, 165501 (2004).CrossRefGoogle Scholar
Mortensen, J.J., Kaasbjerg, K., Frederiksen, S.L., Nørskov, J.K., Sethna, J.P., Jacobsen, K.W., Phys. Rev. Lett. 95, 216401 (2005).CrossRefGoogle Scholar
Petzold, V., Bligaard, T., Jacobsen, K.W., Top. Catal. 55, 402 (2012).CrossRefGoogle Scholar
Wellendorff, J., Lundgaard, K.T., Møgelhøj, A., Petzold, V., Landis, D.D., Nørskov, J.K., Bligaard, T., Jacobsen, K.W., Phys. Rev. B Condens. Matter 85, 235149 (2012).CrossRefGoogle Scholar
Wellendorff, J., Lundgaard, K.T., Jacobsen, K.W., Bligaard, T., J. Chem. Phys. 140, 144107 (2014).CrossRefGoogle Scholar
Pernot, P., J. Chem. Phys. 147, 104102 (2017).CrossRefGoogle Scholar
Proppe, J., Husch, T., Simm, G.N., Reiher, M., Faraday Discuss . 195, 497 (2016).CrossRefGoogle Scholar
Aldegunde, M., Kermode, J.R., Zabaras, N., J. Comput. Phys. 311, 173 (2016).CrossRefGoogle Scholar
Simm, G.N., Reiher, M., J. Chem. Theory Comput. 12, 2762 (2016).CrossRefGoogle Scholar
Ahmad, Z., Viswanathan, V., Phys. Rev. B Condens. Matter 94, 064105 (2016).CrossRefGoogle Scholar
Houchins, G., Viswanathan, V., Phys. Rev. B Condens Matter 96, 134426 (2017).CrossRefGoogle Scholar
Christensen, R., Hansen, H.A., Dickens, C.F., Nørskov, J.K., Vegge, T., J. Phys. Chem. C 120, 24910 (2016).CrossRefGoogle Scholar
Christensen, R., Hansen, H.A., Vegge, T., Catal. Sci. Technol. 5, 4946 (2015).CrossRefGoogle Scholar
Christensen, R., Hummelshøj, J.S., Hansen, H.A., Vegge, T., J. Phys. Chem. C 119, 17596 (2015).CrossRefGoogle Scholar
Medford, A.J., Wellendorff, J., Vojvodic, A., Studt, F., Abild-Pedersen, F., Jacobsen, K.W., Bligaard, T., Nørskov, J.K., Science 345, 197 (2014).CrossRefGoogle Scholar
Deshpande, S., Kitchin, J.R., Viswanathan, V., ACS Catal . 6, 5251 (2016).CrossRefGoogle Scholar
Sumaria, V., Krishnamurthy, D., Viswanathan, V., ACS Catal . 8, 9024 (2018).CrossRefGoogle Scholar
Krishnamurthy, D., Sumaria, V., Viswanathan, V., J. Phys. Chem. Lett. 9, 588 (2018).CrossRefGoogle Scholar
Greeley, J., Nørskov, J.K., Kibler, L.A., El-Aziz, A.M., Kolb, D.M., ChemPhysChem 7, 1032 (2006).CrossRefGoogle Scholar
Nørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J., Chen, J.G., Pandelov, S., Stimming, U., J. Electrochem. Soc. 152, J23 (2005).CrossRefGoogle Scholar
Nørskov, J.K., Bligaard, T., Rossmeisl, J., Christensen, C.H., Nat. Chem. 1, 37 (2009).CrossRefGoogle Scholar
Greeley, J., Nørskov, J.K., J. Phys. Chem. C 113, 4932 (2009).CrossRefGoogle Scholar
Viswanathan, V., Hansen, H.A., Rossmeisl, J., Nørskov, J.K., ACS Catal . 2, 1654 (2012).CrossRefGoogle Scholar
Rankin, R.B., Greeley, J., ACS Catal . 2, 2664 (2012).CrossRefGoogle Scholar
Viswanathan, V., Hansen, H.A., Nørskov, J.K., J. Phys. Chem. Lett. 6, 4224 (2015).CrossRefGoogle Scholar
Verdaguer-Casadevall, A., Deiana, D., Karamad, M., Siahrostami, S., Malacrida, P., Hansen, T.W., Rossmeisl, J., Chorkendorff, I., Stephens, I.E.L., Nano Lett . 14, 1603 (2014).CrossRefGoogle Scholar
Man, I.C., Su, H.Y., Calle-Vallejo, F., Hansen, H.A., Martínez, J.I., Inoglu, N.G., Kitchin, J., Jaramillo, T.F., Nørskov, J.K., Rossmeisl, J., ChemCatChem 3, 1159 (2011).CrossRefGoogle Scholar
Halck, N.B., Petrykin, V., Krtil, P., Rossmeisl, J., Phys. Chem. Chem. Phys. 16, 13682 (2014).CrossRefGoogle Scholar
Parsons, R., J. Chem. Soc. Faraday Trans. 54, 1053 (1958).CrossRefGoogle Scholar
Greeley, J., Jaramillo, T.F., Bonde, J., Chorkendorff, I.B., Nørskov, J.K., in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, Dusastre, V., Ed. (Nature Publishing Group, London; World Scientific Publishing, London, 2011), pp. 280284.Google Scholar
Abild-Pedersen, F., Greeley, J., Studt, F., Rossmeisl, J., Munter, T.R., Moses, P.G., Skulason, E., Bligaard, T., Nørskov, J.K., Phys. Rev. Lett. 99, 016105 (2007).CrossRefGoogle Scholar
Calle-Vallejo, F., Koper, M.T., Electrochim. Acta 84, 3 (2012).CrossRefGoogle Scholar
Nørskov, J.K., Rossmeisl, J., Logadottir, A., Lindqvist, L.R.K.J., Kitchin, J.R., Bligaard, T., Jonsson, H., J. Phys. Chem. B 108, 17886 (2004).CrossRefGoogle Scholar
Rossmeisl, J., Nørskov, J.K., Taylor, C.D., Janik, M.J., Neurock, M., J. Phys. Chem. B 110, 21833 (2006).CrossRefGoogle Scholar
Greeley, J., Stephens, I.E.L., Bondarenko, A.S., Johansson, T.P., Hansen, H.A., Jaramillo, T.F., Rossmeisl, J., Chorkendorff, I.N., Nørskov, J.K., Nat. Chem. 1, 552 (2009).CrossRefGoogle Scholar
Goor, G., Glenneberg, J., Jacobi, S., “Hydrogen Peroxide,” in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, 2000), doi: https://doi.org/10.1002/14356007.a13_443.Google Scholar
Krishnamurthy, D., Sumaria, V., Viswanathan, V., J. Chem. Phys. 150, 041717 (2019).CrossRefGoogle Scholar
Stephens, I.E., Bondarenko, A.S., Grønbjerg, U., Rossmeisl, J., Chorkendorff, I., Energy Environ. Sci. 5, 6744 (2012).CrossRefGoogle Scholar
Olivetti, E.A., Ceder, G., Gaustad, G.G., Fu, X., Joule 1, 229 (2017).CrossRefGoogle Scholar
Mizushima, K., Jones, P.C., Wiseman, P.J., Goodenough, J.B., Mat. Res. Bull. 15, 783 (1980).CrossRefGoogle Scholar
Ohzuku, T., Makimura, Y., Chem. Mater. 30, 642 (2001).Google Scholar
Wang, G., Bewlay, S., Yao, J., Chen, Y., Guo, Z., Liu, H., Dou, S., J. Power Sources 119, 189 (2003).CrossRefGoogle Scholar
Wu, Z., Ji, S., Zheng, J., Hu, Z., Xiao, S., Wei, Y., Zhuo, Z., Lin, Y., Yang, W., Xu, K., Amine, K., Pan, F., Nano Lett. 15, 5590 (2015).CrossRefGoogle Scholar
Li, J., Li, H., Stone, W., Weber, R., Hy, S., Dahn, J.R., J. Electrochem. Soc. 164, A3529 (2017).CrossRefGoogle Scholar
Choi, J., Manthiram, A., J. Power Sources 162, 667 (2006).CrossRefGoogle Scholar
Kim, M.-H., Shin, H.-S., Shin, D., Sun, Y.-K., J. Power Sources 159, 1328 (2006).CrossRefGoogle Scholar
Aydinol, M.K., Kohan, A.F., Ceder, G., Cho, K., Joannopoulos, J., Phys. Rev. B 56, 1354 (1997).CrossRefGoogle Scholar
Ceder, G., Chiang, Y.M., Sadoway, D.R., Aydinol, M.K., Jang, Y.I., Huang, B., Nature 392, 694 (1998).CrossRefGoogle Scholar
Onnerud, C., Onnerud, P., Novikov, D., Shi, J., Chamberlain, R., Koizumi, T., Nagai, A., European Patent 1,405,358 B1 (2002).Google Scholar
Arroyo y de Dompablo, E., Morales, J., J. Electrochem. Soc. 153, A2098 (2006).CrossRefGoogle Scholar
Biskup, N., Martinez, J.L., Arroyo-de Dompablo, M.E., Diaz-Carrasco, P., Morales, J., J. Appl. Phys. 100, 093908 (2006).CrossRefGoogle Scholar
Braithwaite, J.S., Catlow, C.R.A., Harding, J.H., Gale, J.D., Phys. Chem. Chem. Phys. 2, 3841 (2000).CrossRefGoogle Scholar
Hinuma, Y., Meng, Y.S., Kang, K.S., Ceder, G., Chem. Mater. 19, 1790 (2007).CrossRefGoogle Scholar
Van der Ven, A., Ceder, G., Electrochem. Commun. 6, 1045 (2004).CrossRefGoogle Scholar
Lee, E., Iddir, H., Benedek, R., Phys. Rev. B 95, 085134 (2017).CrossRefGoogle Scholar
Houchins, G., Viswanathan, V., Condens. Matter Mater. Sci. (2018), arXiv:1805.08171.Google Scholar
Julien, C., Mauger, A., Zaghib, K., Groult, H., Materials 9, 595 (2016).CrossRefGoogle ScholarPubMed
Tang, P., Holzwarth, N.A.W., Phys. Rev. B 68, 165107 (2003).CrossRefGoogle Scholar
Deniard, P., Dulac, A.M., Rocquefelte, X., Grigorova, V., Lebacq, O., Pasturel, A., Jobic, S., J. Phys. Chem. Solids 65, 229 (2004).CrossRefGoogle Scholar
Osorio-Guillen, J.M., Holm, B., Ahuja, R., Johansson, B., Solid State Ionics 167, 221 (2004).CrossRefGoogle Scholar
Hildebrandt, D., Glasser, D., Chem. Eng. J. 54, 87 (1994).Google Scholar
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E., J. Chem. Phys. 21, 1087 (1953).CrossRefGoogle Scholar