Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T22:04:39.695Z Has data issue: false hasContentIssue false

Role of nanostructures on SOFC performance at reduced temperatures

Published online by Cambridge University Press:  10 September 2014

Kang Taek Lee
Affiliation:
Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology, Korea; ktlee@dgist.ac.kr
Eric D. Wachsman
Affiliation:
Energy Research Center, University of Maryland, USA; ewach@umd.edu
Get access

Abstract

Solid-oxide fuel cells (SOFCs) are an energy conversion technology with unique potential to have the highest energy conversion efficiency with the least environmental impact, as well as broad fuel flexibility from renewable to conventional fuels. Lowering the SOFC operating temperature will further lower system and operational costs, increase long-term durability, and allow more rapid start-up, providing feasibility for load following and transportation applications. Unfortunately, at reduced temperatures, the thermally activated nature of ionic conduction and electrochemical reactions increase polarization resistances, thus decreasing cell and system performance. However, lower operating temperatures also create the opportunity to employ nanostructured materials with higher surface area-to-volume ratios and greater interphase and interfacial regions, which can greatly enhance electrochemical performance. Here, we review recent progress in the development of various nanostructured electrodes and electrolytes and discuss their effects on the enhancement of the electrocatalytic activity of oxygen reduction and fuel oxidation, as well as oxygen-ion conduction, in order to achieve high-performance low-temperature SOFCs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wachsman, E.D., Lee, K.T., Science 334, 935 (2011).Google Scholar
Steele, B.C.H., Heinzel, A., Nature 414, 345 (2001).CrossRefGoogle Scholar
Murray, E.P., Tsai, T., Barnett, S.A., Nature 400, 649 (1999).Google Scholar
Park, S.D., Vohs, J.M., Gorte, R.J., Nature 404, 265 (2000).Google Scholar
Huang, Y.H., Dass, R.I., Xing, Z.L., Goodenough, J.B., Science 312, 254 (2006).Google Scholar
Yang, L., Wang, S.Z., Blinn, K., Liu, M.F., Liu, Z., Cheng, Z., Liu, M.L., Science 326, 126 (2009).CrossRefGoogle Scholar
Lee, K.T., Gore, C.M., Wachsman, E.D., J. Mater. Chem. 22, 22405 (2012).Google Scholar
Song, C.S., Catal. Today 77, 17 (2002).Google Scholar
Lee, K.T., Yoon, H.S., Wachsman, E.D., J. Mater. Res. 27, 2063 (2012).Google Scholar
Wachsman, E.D., Marlowe, C.A., Lee, K.T., Energy Environ. Sci. 5, 5498 (2012).Google Scholar
Brett, D.J.L., Atkinson, A., Brandon, N.P., Skinner, S.J., Chem. Soc. Rev. 37, 1568 (2008).Google Scholar
Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.M., Van Schalkwijk, W., Nat. Mater. 4, 366 (2005).Google Scholar
Adler, S.B., Chem. Rev. 104, 4791 (2004).Google Scholar
Xia, C.R., Rauch, W., Chen, F.L., Liu, M.L., Solid State Ionics 149, 11 (2002).CrossRefGoogle Scholar
Sasaki, K., Tamura, J., Hosoda, H., Lan, T.N., Yasumoto, K., Dokiya, M., Solid State Ionics 148, 551 (2002).Google Scholar
Ishihara, T., Kudo, T., Matsuda, H., Takita, Y., J. Electrochem. Soc. 142, 1519 (1995).Google Scholar
Mogensen, M., Skaarup, S., Solid State Ionics 868, 1151 (1996).Google Scholar
Godickemeier, M., Sasaki, K., Gauckler, L.J., Riess, I., Solid State Ionics 868, 691 (1996).Google Scholar
Minh, N.Q., J. Am. Ceram. Soc. 76, 563 (1993).CrossRefGoogle Scholar
Murray, E.P., Tsai, T., Barnett, S.A., Solid State Ionics 110, 235 (1998).Google Scholar
Yoon, S.P., Han, J., Nam, S.W., Lim, T.H., Oh, I.H., Hong, S.A., Yoo, Y.S., Lim, H.C., J. Power Sources 106, 160 (2002).Google Scholar
Jiang, S.P., J. Power Sources 124, 390 (2003).Google Scholar
Brandon, N.P., Skinner, S., Steele, B.C.H., Annu. Rev. Mater. Res. 33, 183 (2003).Google Scholar
Tanner, C.W., Fung, K.Z., Virkar, A.V., J. Electrochem. Soc. 144, 21 (1997).Google Scholar
Murray, E.P., Barnett, S.A., Solid State Ionics 143, 265 (2001).Google Scholar
Lee, K.T., Jung, D.W., Yoon, H.S., Lidie, A.A., Camaratta, M.A., Wachsman, E.D., J. Power Sources 220, 324 (2012).Google Scholar
Deganello, F., Esposito, V., Miyayama, M., Traversa, E., J. Electrochem. Soc. 154, A89 (2007).Google Scholar
Han, F., Muecke, R., Van Gestel, T., Leonide, A., Menzler, N.H., Buchkremer, H.P., Stover, D., J. Power Sources 218, 157 (2012).Google Scholar
Shao, Z.P., Haile, S.M., Nature 431, 170 (2004).Google Scholar
Petric, A., Huang, P., Tietz, F., Solid State Ionics 135, 719 (2000).Google Scholar
Mai, A., Becker, M., Assenmacher, W., Tietz, F., Hathiramani, D., Ivers-Tiffee, E., Stover, D., Mader, W., Solid State Ionics 177, 1965 (2006).Google Scholar
Bucher, E., Egger, A., Caraman, G.B., Sitte, W., J. Electrochem. Soc. 155, B1218 (2008).Google Scholar
Oh, D., Gostovic, D., Wachsman, E.D., J. Mater. Res. 27, 1992 (2012).Google Scholar
Chen, X.J., Chan, S.H., Khor, K.A., Electrochim. Acta 49, 1851 (2004).Google Scholar
Janardhanan, V.M., Heuveline, V., Deutschmann, O., J. Power Sources 178, 368 (2008).Google Scholar
Zhu, W., Ding, D., Xia, C., Electrochem. Solid-State Lett. 11, B83 (2008).Google Scholar
Chick, L.A., Pederson, L.R., Maupin, G.D., Bates, J.L., Thomas, L.E., Exarhos, G.J., Mater. Lett. 10, 6 (1990).Google Scholar
Huang, S.G., Peng, C.Q., Zong, Z., J. Power Sources 176, 102 (2008).Google Scholar
Lee, K.T., Lee, B.W., Camaratta, B.A., Wachsman, E.D., RSC Adv. 3, 19866 (2013).Google Scholar
Jang, W.S., Hyun, S.H., Kim, S.G., J. Mater. Sci. 37, 2535 (2002).Google Scholar
Zhen, Y., Jiang, S.P., J. Power Sources 180, 695 (2008).Google Scholar
Sato, K., Kinoshita, T., Abe, H., Naito, M., J. Ceram. Soc. Jpn. 117, 1186 (2009).Google Scholar
Zhen, Q.A., Kale, G.M., Shi, G., Li, R., He, W.M., Liu, J.Q., Solid State Ionics 176, 2727 (2005).Google Scholar
Lee, K.T., Jung, D.W., Camaratta, M.A., Yoon, H.S., Ahn, J.S., Wachsman, E.D., J. Power Sources 205, 122 (2012).Google Scholar
Lee, K.T., Lidie, A.A., Jeon, S.Y., Hitz, G.T., Song, S.J., Wachsman, E.D., J. Mater. Chem. A 1, 6199 (2013).Google Scholar
Hagiwara, A., Hobara, N., Takizawa, K., Sato, K., Abe, H., Naito, M., Solid State Ionics 178, 1123 (2007).Google Scholar
Baque, L., Caneiro, A., Moreno, M.S., Serquis, A., Electrochem. Commun. 10, 1905 (2008).Google Scholar
Jiang, S.P., Mater. Sci. Eng. A 418, 199 (2006).Google Scholar
Vohs, J.M., Gorte, R.J., Adv. Mater. 21, 943 (2009).Google Scholar
Jiang, Z.Y., Xia, C.R., Chen, F.L., Electrochim. Acta 55, 3595 (2010).Google Scholar
Jiang, S.P., Int. J. Hydrogen Energy 37, 449 (2012).Google Scholar
Sholklapper, T.Z., Lu, C., Jacobson, C.P., Visco, S.J., De Jonghe, L.C., Electrochem. Solid-State Lett. 9, A376 (2006).Google Scholar
Sholklapper, T.Z., Kurokawa, H., Jacobson, C.P., Visco, S.J., De Jonghe, L.C., Nano Lett. 7, 2136 (2007).Google Scholar
Zhao, F., Peng, R., Xia, C., Mater. Res. Bull. 43, 370 (2008).Google Scholar
Lynch, M.E., Yang, L., Qin, W.T., Choi, J.J., Liu, M.F., Blinn, K., Liu, M.L., Energy Environ. Sci. 4, 2249 (2011).Google Scholar
Kan, C.C., Kan, H.H., Van Assche, F.M., Armstrong, E.N., Wachsman, E.D., J. Electrochem. Soc. 155, B985 (2008).Google Scholar
Kan, C.C., Wachsman, E.D., Solid State Ionics 181, 338 (2010).Google Scholar
Armstrong, E.N., Duncan, K.L., Oh, D.J., Weaver, J.F., Wachsman, E.D., J. Electrochem. Soc. 158, B492 (2011).Google Scholar
Armstrong, E.N., Duncan, K.L., Wachsman, E.D., Phys. Chem. Chem. Phys. 15, 2298 (2013).Google Scholar
Zhi, M.J., Mariani, N., Gemmen, R., Gerdes, K., Wu, N.Q., Energy Environ. Sci. 4, 417 (2011).Google Scholar
Zhi, M., Lee, S., Miller, N., Menzler, N.H., Wu, N., Energy Environ. Sci. 5, 7066 (2012).Google Scholar
Sacanell, J., Leyva, A.G., Bellino, M.G., Lamas, D.G., J. Power Sources 195, 1786 (2010).Google Scholar
Sacanell, J., Bellino, M.G., Lamas, D.G., Leyva, A.G., Physica B 398, 341 (2007).Google Scholar
Bellino, M.G., Sacanell, J.G., Lamas, D.G., Leyva, A.G., Walsoe de Reca, N.E., J. Am. Chem. Soc. 129, 3066 (2007).Google Scholar
Gong, Y., Palacio, D., Song, X., Patel, R.L., Liang, X., Zhao, X., Goodenough, J.B., Huang, K., Nano Lett. 13, 4340 (2013).Google Scholar
Sun, C.W., Stimming, U., J. Power Sources 171, 247 (2007).CrossRefGoogle Scholar
Zha, S., Cheng, Z., Liu, M., J. Electrochem. Soc. 154, B201 (2007).Google Scholar
Eguchi, K., Kojo, H., Takeguchi, T., Kikuchi, R., Sasaki, K., Solid State Ionics 152, 411 (2002).CrossRefGoogle Scholar
Kurokawa, H., Sholklapper, T.Z., Jacobson, C.P., De Jonghe, L.C., Visco, S.J., Electrochem. Solid-State Lett. 10, B135 (2007).Google Scholar
Park, S., Gorte, R.J., Vohs, J.M., J. Electrochem. Soc. 148, A443 (2001).Google Scholar
Gross, M.D., Vohs, J.M., Gorte, R.J., J. Mater. Chem. 17, 3071 (2007).Google Scholar
Pena-Martinez, J., Marrero-Lopez, D., Ruiz-Morales, J.C., Savaniu, C., Nunez, P., Irvine, J.T.S., Chem. Mater. 18, 1001 (2006).Google Scholar
Fu, Q.X., Tietz, F., Stover, D., J. Electrochem. Soc. 153, D74 (2006).Google Scholar
Shen, S., Guo, L., Liu, H., Int. J. Hydrogen Energy 38, 1967 (2013).Google Scholar
Ishihara, T., Shin, T.H., Vanalabhpatana, P., Yonemoto, K., Matsuka, M., Electrochem. Solid-State Lett. 13, B95 (2010).Google Scholar
Jiang, S.P., Chen, X.J., Chan, S.H., Kwok, J.T., Khor, K.A., Solid State Ionics 177, 149 (2006).Google Scholar
Jiang, S.P., Liu, L., Ong, K.P., Wu, P., Li, H., Pu, H., J. Power Sources 176, 82 (2008).Google Scholar
Shin, T.H., Okamoto, Y., Ida, S., Ishihara, T., Chem. Eur. J. 18, 11695 (2012).Google Scholar
Hussain, A.M., Hogh, J.V.T., Zhang, W., Blennow, P., Bonanos, N., Boukamp, B.A., Electrochim. Acta 113, 635 (2013).Google Scholar
Jiang, S.P., Chen, X.J., Chan, S.H., Kwok, J.T., J. Electrochem. Soc. 153, A850 (2006).Google Scholar
Jiang, S.P., Ye, Y., He, T., Ho, S.B., J. Power Sources 185, 179 (2008).CrossRefGoogle Scholar
Ahn, J.S., Yoon, H., Lee, K.T., Camaratta, M.A., Wachsman, E.D., Fuel Cells 9, 643 (2009).Google Scholar
Ai, N., Lu, Z., Chen, K.F., Huang, X.Q., Du, X.B., Su, W.H., J. Power Sources 171, 489 (2007).Google Scholar
Williford, R.E., Chick, L.A., Maupin, G.D., Simner, S.P., Stevenson, J.W., J. Electrochem. Soc. 150, A1067 (2003).Google Scholar
Hassan, A.A.E., Menzler, N.H., Blass, G., Ali, M.E., Buchkremer, H.P., Stover, D., Adv. Eng. Mater. 4, 125 (2002).Google Scholar
Kong, J.R., Sun, K.N., Zhou, D.R., Zhang, N.Q., Mu, J., Qiao, J.S., J. Power Sources 166, 337 (2007).Google Scholar
Lee, K.T., Vito, N.J., Yoon, H.S., Wachsman, E.D., J. Electrochem. Soc. 159, F187 (2012).Google Scholar
Lee, K.T., Vito, N.J., Wachsman, E.D., J. Power Sources 228, 220 (2013).Google Scholar
Lee, K.T., Yoon, H.S., Ahn, J.S., Wachsman, E.D., J. Mater. Chem. 22, 17113 (2012).Google Scholar
Zhan, Z.L., Barnett, S.A., Science 308, 844 (2005).Google Scholar
Wang, W., Jiang, S.P., Tok, A.I.Y., Luo, L., J. Power Sources 159, 68 (2006).Google Scholar
Babaei, A., Jiang, S.P., Li, J., J. Electrochem. Soc. 156, B1022 (2009).Google Scholar
Ishihara, T., Matsuda, H., Takita, Y., Solid State Ionics 79, 147 (1995).CrossRefGoogle Scholar
Huang, K.Q., Tichy, R.S., Goodenough, J.B., J. Am. Ceram. Soc. 81, 2565 (1998).Google Scholar
Zhan, Z., Bierschenk, D.M., Cronin, J.S., Barnett, S.A., Energy Environ. Sci. 4, 3951 (2011).Google Scholar
Beckel, D., Bieberle-Huetter, A., Harvey, A., Infortuna, A., Muecke, U.P., Prestat, M., Rupp, J.L.M., Gauckler, L.J., J. Power Sources 173, 325 (2007).Google Scholar
Matsuzaki, Y., Hishinuma, M., Yasuda, I., Thin Solid Films 340, 72 (1999).CrossRefGoogle Scholar
Wang, S.Y., Wang, W., Liu, Q.C., Zhang, M., Qian, Y.T., Solid State Ionics 133, 211 (2000).Google Scholar
Shim, J.H., Chao, C.-C., Huang, H., Prinz, F.B., Chem. Mater. 19, 3850 (2007).Google Scholar
Park, J.S., Kim, Y.B., Shim, J.H., Kang, S., Guer, T.M., Prinz, F.B., Chem. Mater. 22, 5366 (2010).CrossRefGoogle Scholar
Park, J.S., Holme, T.P., Shim, J.H., Prinz, F.B., MRS Commun. 2, 107 (2012).Google Scholar
Chao, C.-C., Hsu, C.-M., Cui, Y., Prinz, F.B., ACS Nano 5, 5692 (2011).Google Scholar
Chao, C.-C., Park, J.S., Tian, X., Shim, J.H., Guer, T.M., Prinz, F.B., ACS Nano 7, 2186 (2013).Google Scholar
Shim, J.H., Kang, S., Cha, S.-W., Lee, W., Kim, Y.B., Park, J.S., Guer, T.M., Prinz, F.B., Chao, C.-C., An, J., J. Mater. Chem. A 1, 12695 (2013).Google Scholar
An, J., Kim, Y.-B., Park, J., Guer, T.M., Prinz, F.B., Nano Lett. 13, 4551 (2013).Google Scholar
Joo, J.H., Choi, G.M., Solid State Ionics 177, 1053 (2006).Google Scholar
Muecke, U.P., Beckel, D., Bernard, A., Bieberle-Huetter, A., Graf, S., Infortuna, A., Mueller, P., Rupp, J.L.M., Schneider, J., Gauckler, L.J., Adv. Funct. Mater. 18, 3158 (2008).Google Scholar
Kwon, C.-W., Son, J.-W., Lee, J.-H., Kim, H.-M., Lee, H.-W., Kim, K.-B., Adv. Funct. Mater. 21, 1154 (2011).Google Scholar
Lee, K.-R., Lee, J.-H., Yoo, H.-I., Phys. Chem. Chem. Phys. 15, 15632 (2013).Google Scholar
Hertz, J.L., Tuller, H.L., J. Electroceram. 13, 663 (2004).Google Scholar
Rey-Mermet, S., Yan, Y., Sandu, C., Deng, G., Muralt, P., Thin Solid Films 518, 4743 (2010).Google Scholar
Kerman, K., Lai, B.-K., Ramanathan, S., Adv. Energy Mater. 2, 656 (2012).Google Scholar
Evans, A., Bieberle-Huetter, A., Rupp, J.L.M., Gauckler, L.J., J. Power Sources 194, 119 (2009).Google Scholar
Fleig, J., Tuller, H.L., Maier, J., Solid State Ionics 174, 261 (2004).Google Scholar
Aoki, M., Chiang, Y.M., Kosacki, I., Lee, I.J.R., Tuller, H., Liu, Y.P., J. Am. Ceram. Soc. 79, 1169 (1996).Google Scholar
Badwal, S.P.S., Rajendran, S., Solid State Ionics 70, 83 (1994).Google Scholar
Bernasik, A., Kowalski, K., Sadowski, A., J. Phys. Chem. Solids 63, 233 (2002).CrossRefGoogle Scholar
Gerhardt, R., Nowick, A.S., Mochel, M.E., Dumler, I., J. Am. Ceram. Soc. 69, 647 (1986).Google Scholar
Tuller, H.L., Solid State Ionics 131, 143 (2000).Google Scholar
Kliewer, K.L., Koehler, J.S., Phys. Rev. 140, 1226 (1965).Google Scholar
Maier, J., Prog. Solid State Chem. 23, 171 (1995).Google Scholar
Maier, J., Solid State Ionics 23, 59 (1987).Google Scholar
Maier, J., Phys. Chem. Chem. Phys. 11, 3011 (2009).Google Scholar
Despotuli, A.L., Nikolaichik, V.I., Solid State Ionics 60, 275 (1993).CrossRefGoogle Scholar
Schoonman, J., Solid State Ionics 157, 319 (2003).Google Scholar
Maier, J., Solid State Ionics 157, 327 (2003).Google Scholar
Maier, J., Nat. Mater. 4, 805 (2005).Google Scholar
Maier, J., Chem. Mater. 26, 348 (2014).Google Scholar
Leon, C., Santamaria, J., Boukamp, B.A., MRS Bull. 38, 1056 (2013).Google Scholar
Mondal, P., Klein, A., Jaegermann, W., Hahn, H., Solid State Ionics 118, 331 (1999).Google Scholar
Jiang, S.S., Schulze, W.A., Amarakoon, V.R.W., Stangle, G.C., J. Mater. Res. 12, 2374 (1997).Google Scholar
Guo, X., Vasco, E., Mi, S.B., Szot, K., Wachsman, E., Waser, R., Acta Mater. 53, 5161 (2005).Google Scholar
Kosacki, I., Suzuki, T., Petrovsky, V., Anderson, H.U., Solid State Ionics 136, 1225 (2000).Google Scholar
Kosacki, I., Rouleau, C.M., Becher, P.F., Bentley, J., Lowndes, D.H., Solid State Ionics 176, 1319 (2005).Google Scholar
Azad, S., Marina, O.A., Wang, C.M., Saraf, L., Shutthanandan, V., McCready, D.E., El-Azab, A., Jaffe, J.E., Engelhard, M.H., Peden, C.H.F., Thevuthasan, S., Appl. Phys. Lett. 86, 131906 (2005).Google Scholar
Peters, A., Korte, C., Hesse, D., Zakharov, N., Janek, J., Solid State Ionics 178, 67 (2007).Google Scholar
Knoner, G., Reimann, K., Rower, R., Sodervall, U., Schaefer, H.E., Proc. Natl. Acad. Sci. U.S.A. 100, 3870 (2003).Google Scholar
De Souza, R.A., Pietrowski, M.J., Anselmi-Tamburini, U., Kim, S., Munir, Z.A., Martin, M., Phys. Chem. Chem. Phys. 10, 2067 (2008).Google Scholar
Garcia-Barriocanal, J., Rivera-Calzada, A., Varela, M., Sefrioui, Z., Iborra, E., Leon, C., Pennycook, S.J., Santamaria, J., Science 321, 676 (2008).Google Scholar
Guo, X., Science 324, 465 (2009).Google Scholar
De Souza, R.A., Ramadan, A., Hoerner, S., Energy Environ. Sci. 5, 5445 (2012).Google Scholar
Zhu, B., Int. J. Energy Res. 33, 1126 (2009).Google Scholar
Zhao, Y., Xia, C., Jia, L., Wang, Z., Li, H., Yu, J., Li, Y., Int. J. Hydrogen Energy 38, 16498 (2013).Google Scholar
Chockalingam, R., Amarakoon, V.R.W., Giesche, H., J. Eur. Ceram. Soc. 28, 959 (2008).CrossRefGoogle Scholar
Fu, Q.X., Zha, S.W., Zhang, W., Peng, D.K., Meng, G.Y., Zhu, B., J. Power Sources 104, 73 (2002).Google Scholar
Meng, G.Y., Fu, Q.X., Zha, S.W., Xia, C.R., Liu, X.Q., Peng, D.K., Solid State Ionics 148, 533 (2002).Google Scholar
Zhu, B., Liu, X.G., Zhou, P., Yang, X.T., Zhu, Z.G., Zhu, W., Electrochem. Commun. 3, 566 (2001).Google Scholar
Baek, S.-S., Lee, N., Kim, B.-K., Chang, H., Song, S.-J., Park, J.-Y., Int. J. Hydrogen Energy 37, 16823 (2012).Google Scholar
Wang, X., Ma, Y., Raza, R., Muhammed, M., Zhu, B., Electrochem. Commun. 10, 1617 (2008).Google Scholar
Zhu, B., Li, S., Mellander, B.E., Electrochem. Commun. 10, 302 (2008).Google Scholar
Wang, X., Ma, Y., Li, S., Kashyout, A.-H., Zhu, B., Muhammed, M., J. Power Sources 196, 2754 (2011).Google Scholar
Ma, Y., Wang, X., Li, S., Toprak, M.S., Zhu, B., Muhammed, M., Adv. Mater. 22, 1640 (2010).Google Scholar
Xia, C., Li, Y., Tian, Y., Liu, Q., Wang, Z., Jia, L., Zhao, Y., Li, Y., J. Power Sources 195, 3149 (2010).Google Scholar
Xia, C., Li, L., Tian, Y., Liu, Q., Zhao, Y., Jia, L., Li, Y., J. Power Sources 188, 156 (2009).Google Scholar
Zhao, Y., Xia, C., Wang, Y., Xu, Z., Li, Y., Int. J. Hydrogen Energy 37, 8556 (2012).Google Scholar
Ding, D., Liu, B., Zhu, Z., Zhou, S., Xia, C., Solid State Ionics 179, 896 (2008).Google Scholar
Huang, J., Gao, Z., Mao, Z., Int. J. Hydrogen Energy 35, 4270 (2010).CrossRefGoogle Scholar
Raza, R., Wang, X., Ma, Y., Liu, X., Zhu, B., Int. J. Hydrogen Energy 35, 2684 (2010).Google Scholar
Ferreira, A.S.V., Soares, C.M.C., Figueiredo, F.M.H.L.R., Marques, F.M.B., Int. J. Hydrogen Energy 36, 3704 (2011).Google Scholar
Chockalingam, R., Basu, S., Int. J. Hydrogen Energy 36, 14977 (2011).Google Scholar
Khan, M.A., Raza, R., Lima, R.B., Chaudhry, M.A., Ahmed, E., Abbas, G., Int. J. Hydrogen Energy 38, 16524 (2013).Google Scholar