Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T12:01:13.578Z Has data issue: false hasContentIssue false

The RABiTS Approach: Using Rolling-Assisted Biaxially Textured Substrates for High-Performance YBCO Superconductors

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This article provides an overview of the fabrication of epitaxial, biaxially aligned buffer layers on rolling-assisted biaxially textured substrates (RABiTS) as templates for YBCO films carrying high critical current densities.The RABiTS technique uses standard thermomechanical processing to obtain long lengths of flexible, biaxially oriented substrates with smooth surfaces.The strong biaxial texture of the metal is conferred to the superconductor by the deposition of intermediate metal and/or oxide layers that serve both as a chemical and a structural buffer.Epitaxial YBCO films with critical current densities exceeding 3 106A/cm2at 77K in self-field have been grown on RABiTS using a variety of techniques and demonstrate magnetic-field-dependent critical current values that are similar to those of epitaxial films on single-crystal ceramic substrates.The RABiTS architecture most commonly used consists of a CeO2 (sputtered)/YSZ (sputtered)/Y203 (e-beam)/Ni-W alloy.

The desired texture of the base metal has been achieved in 100 m lengths and 10cm widths.Scaleable and cost-effective techniques are also being pursued to deposit the epitaxial multilayers.The results discussed here demonstrate that this technique is a viable route for the fabrication of long lengths of high-critical-current-density wire capable of carrying high currents in magnetic fields and at temperatures accessible by cooling with relatively inexpensive liquid nitrogen (up through the 77K range).

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Barrett, C.S. and Massalski, T.B.Structure of Metals (McGraw Hill, New York, 1966).Google Scholar
2Bunge, H.J. and Esling, C.Quantitative Texture Analysis (DGM Metallurgy Information, Oberursel, Germany, 1982).Google Scholar
3Wenk, H.R. and Kocks, U.F.Metall. Trans. A 18A (1987) p.1083.Google Scholar
4Frank, F.C.Metall. Trans. A 19A (1988) p.403.CrossRefGoogle Scholar
5Goyal, A. in Second Generation HTS Conductors, edited by Goyal, A. (Plenum, New York, 2004) in press.Google Scholar
6Goyal, A.Norton, D.P.Budai, J.D.Paranthaman, M., Specht, E.D.Kroeger, D.M.Christen, D.K.He, Q.Saffian, B.List, F.A.Lee, D.F.Martin, P.M.Klabunde, C.E.Hatfield, E. and V. Sikka, S.Appl. Phys. Lett. 69 (1996) p.1795.Google Scholar
7Goyal, A.Budai, J.D.Kroeger, D.M.Norton, D.P., Specht, E.D. and Christen, D.K. U.S Patent No. 5,739,086 (April 14, 1998); A., Goyal, J.D. Budai, D.M. Kroeger, D.P. Norton, E.D. Specht and D.K. Christen U.S Patent No. 5,741,377 (April 21, 1998); V. Selvaman-ickam, A., Goyal and D.M., Kroeger U.S Patent No.5,846,912 (December 8, 1998); A., Goyal, J.D., Budai, D.M., Kroeger, D.P., Norton, E.D., Specht and D.K., Christen U.S Patent No. 5,898,020 (April 27, 1999).Google Scholar
8Goyal, A.Norton, D.P.Kroeger, D.M.Christen, D.K., Paranthaman, M.Specht, E.D.Budai, J.D.He, Q.Saffian, B.List, F.A.Lee, D.F.Hatfield, E.Martin, P.M.Klabunde, C.E.Mathis, J., and Park, C.J. Mater. Res. 12 (1997) p.2924.Google Scholar
9Goyal, A.Norton, D.P.Christen, D.K.Specht, E.D., Paranthaman, M.Kroeger, D.M.Budai, J.D.He, Q.List, F.A.Feenstra, R.Kerchner, H.R.Lee, D.F.Martin, P.M.Hatfield, E.Martin, P.M.Mathis, J. and Park, C.Appl. Supercond. 4 (1996) p.403.CrossRefGoogle Scholar
10Goyal, A.Feenstra, R.Paranthaman, M.Thompson, J.R.Kang, B.Y.Cantoni, C.Lee, D.F.List, F.A.Martin, P.M.Lara-Curzio, E., Stevens, C.Kroeger, D.M.Kowalewski, M.Specht, E.D.Aytug, T.Sathyamurthy, S.Williams, R.K. and Ericson, R.E.Physica C 382 (2002) p.251.CrossRefGoogle Scholar
11Specht, E.D.Goyal, A.Lee, D.F.List, F.A.Kroeger, D.M.Paranthaman, M.Williams, R.K. and Christen, D.K.Supercond. Sci. and Tech. 11 (1998) p.945.CrossRefGoogle Scholar
12Goyal, A.Lee, D.F.List, F.A.Specht, E.D.Feenstra, R.Paranthaman, M.Cui, X.Lu, S.W.Martin, P.M.Kroeger, D.M.Christen, D.K.Kang, B.W.Norton, D.P.Park, C.Verebelyi, D.T.Thompson, J.R.Williams, R.K.Aytug, T. and Cantoni, C.Physica C 357–360 (2001) p.903.Google Scholar
13Thompson, J.R.Goyal, A.Christen, D.K. and Kroeger, D.M.Physica C 370 (2001) p. 169.Google Scholar
14Ijaduola, A.O.Thompson, J.R.Goyal, A.Thieme, C.L.H. and Marken, K.Physica C 403 (2004) p.163.CrossRefGoogle Scholar
15Goyal, A.Specht, E.D.Kroeger, D.M. and Paranthaman, M. U.S. Patent No.5,964,966 (October 12, 1999); A., Goyal, E.D., Specht, D.M., Kroeger, and M., Paranthaman, U.S. Patent No.6,106,615 (August 22, 2000); A., Goyal, D.M., Kroeger, M., Paranthaman, D.F., Lee, R., Feenstra, and D.P., Norton, U.S. Patent No. 6,451,450 (September 17, 2002).Google Scholar
16Kim, I.Barnes, P.N.Goyal, A.Barnett, S.A.Biggers, R.Kozlowski, G.Varanasi, C.Maartens, I.Nekkanti, R.Peterson, T.Haughan, T. and Sambasivan, S.Physica C 377 (2002) p.227.Google Scholar
17Cantoni, C.Christen, D.K.Varela, M.Thompson, J.R.Pennycook, S.J.Specht, E.D. and Goyal, A.J.Mater. Res. 18 (2003) p.2387.Google Scholar
18Paranthaman, M.P.Aytug, T.Zhai, H.Y.Christen, H.M.Christen, D.K.Goyal, A.Heatherly, L. and Kroeger, D.M.Ceramic Trans. 149 (2004) p.33.Google Scholar
19Paranthaman, M.Goyal, A.Kroeger, D.M. and List, F.A. III , U.S. Patent Nos. 6,261,704 (July 17, 2001) and 6,468,591 (October 22, 2002).Google Scholar
20Paranthaman, M.Shoup, S.S.Beach, D.B.Williams, R.K. and Specht, E.D.Mater. Res. Bull. 32 (1997) p.1697.Google Scholar
21Matsumoto, K.Takechi, A.Ono, T.Hirabayashi, I. and Osamura, K.Physica C 392 (2003) p.830.Google Scholar
22Matsumoto, K.Kim, S.B.Wen, J.G.Hirabayashi, I.Watanabe, T.Uno, N. and Ikeda, M.IEEE Trans. Appl. Supercond. 9 (1999) p.1539.CrossRefGoogle Scholar
23Sun, J.W.Kim, H.S.Ji, B.K.Park, H.W.Hong, G.W.Jung, C.H.Park, S.D.Jun, B.H. and Kim, C.J.IEEE Trans. Appl. Supercond. 13 (2003) p.2539.Google Scholar
24Matsumoto, K.Hirabayashi, I. and Osamura, K.Physica C 378 (2002) p.922.CrossRefGoogle Scholar
25Paranthaman, M.Goyal, A.Norton, D.P.List, F.A.Specht, E.D.Christen, D.K.Kroeger, D.M.Budai, J.D.He, Q.Saffian, B.Lee, D.F. and Martin, P.M. in Proc. 9th Intl. Symp. on Superconductivity: Advances in Superconductivity IX (ISS'96), Vol.2, edited by Nakajima, S. and Murakami, M. (Springer-Verlag, Tokyo, 1996) p.669.Google Scholar
26Paranthaman, M.Goyal, A.List, F.A.Specht, E.D.Lee, D.F.Martin, P.M.He, Q.Christen, D.K., Norton, D.P.Budai, J.D. and Kroeger, D.M.Physica C 275 (1997) p.266.CrossRefGoogle Scholar
27He, Q.Christen, D.K.Budai, J.D.Specht, E.D.Lee, D.F.Goyal, A.Norton, D.P.Paranthaman, M., List, F.A. and Kroeger, D.M.Physica C 275 (1997) p.155.Google Scholar
28Aytug, T.Wu, J.Z.Cantoni, C.Verebelyi, D.T.Specht, E.D.Paranthaman, M.Norton, D.P.Christen, D.K.Ericson, R.E. and Thomas, C.L.Appl. Phys. Lett. 76 (2000) p.760.Google Scholar
29Dawley, J.T.Ong, R.J. and Clem, P.G.J.Mater. Res. 17 (2002) 1678.CrossRefGoogle Scholar
30Sathyamurthy, S. and Salama, K.Physica C 329 (2000) p.58.Google Scholar
31Paranthaman, M.P.Aytug, T. and Christen, D.K. U.S. Patent No. 6,617,283 (September 9, 2003).Google Scholar
32Paranthaman, M.P.Aytug, T.Zhai, H.Y.Sathyamurthy, S.Christen, H.M.Martin, P.M.Christen, D.K.Ericson, R.E. and Thomas, C.L. in Materials for High-Temperature Superconductor Technologies, edited by Paranthaman, M.P.Rupich, M.W.Salama, K.Mannhart, J. and Hasegawa, T. (Mater. Res. Soc. Symp. Proc. 689, Warrendale, PA, 2002) p.323.Google Scholar
33Aytug, T.Paranthaman, M.Kang, B.W.Sathyamurthy, S.Goyal, A. and Christen, D.K.Appl. Phys. Lett. 79 (2001) p.2205.Google Scholar
34Aytug, T.Goyal, A.Rutter, N.Paranthaman, M.Thompson, J.R.Zhai, H.Y. and Christen, D.K.J.Mater. Res. 18 (2003) p.872.Google Scholar
35Paranthaman, M.Chirayil, T.G.List, F.A.Cui, X.Goyal, A.Lee, D.F.Specht, E.D.Martin, P.M.Williams, R.K.Kroeger, D.M.Morrell, J.S.Beach, D.B.Feenstra, R. and Christen, D.K.J. Am. Ceram. Soc. 84 (2001) p.273.CrossRefGoogle Scholar
36Akin, Y.Heiba, Z.K.Sigmund, W. and Hascicek, Y.S.Solid-State Electron. 47 (2003) p. 2171.CrossRefGoogle Scholar
37Aytug, T.Paranthaman, M.Zhai, H.Y.Gapud, A.A.Goyal, A.Martin, P.M.Leonard, K.J.Thompson, J.R., and Christen, D.K. Appl. Phys. Lett. (2004) in press.Google Scholar
38Norton, D.P.Goyal, A.Budai, J.D.Christen, D.K.Kroeger, D.M.Specht, E.D.He, Q.Saffian, B., Paranthaman, M.Klabunde, C.Lee, D.F.Sales, B.C. and List, F.A.Science 274 (1996) p. 755.CrossRefGoogle Scholar
39Morrell, J.S.Xue, Z.B.Specht, E.D.Goyal, A.Martin, P.M.Lee, D.F.Feenstra, R.Verebelyi, D.T.Christen, D.K.Chirayil, T.G.Paranthaman, M.Vallet, C.E. and Beach, D.B.J. Mater. Res. 15 (2000) p.621.Google Scholar
40Paranthaman, M.Lee, D.F.Goyal, A.Specht, E.D.Martin, P.M.Cui, X.Mathis, J.E.Feenstra, R., Christen, D.K, and Kroeger, D.M.Supercond. Sci. Technol. 12 (1999) p.319.Google Scholar
41Paranthaman, M.Chirayil, T.G.Sathyamurthy, S.Beach, D.B.Goyal, A.List, F.A.Lee, D.F.Cui, X.Lu, S.W.Kang, B.Specht, E.D.Martin, P.M.Kroeger, D.M.Feenstra, R.Cantoni, C. and Christen, D.K.IEEE Trans. Appl. Supercond. 11 (2001) p.3146.CrossRefGoogle Scholar
42Chirayil, T.G.Paranthaman, M.Beach, D.B.Lee, D.F.Goyal, A.Williams, R.K.Cui, X.Kroeger, D.M.Feenstra, R.Verebelyi, D.T. and Christen, D.K., Physica C 336 (2000) p.63.CrossRefGoogle Scholar
43Sathyamurthy, S.Paranthaman, M.Zhai, H.Y.Christen, H.M.Martin, P.M. and Goyal, A.J.Mater. Res. 17 (2002) p.2181.CrossRefGoogle Scholar
44Paranthaman, M.P.Aytug, T.Sathyamurthy, S.Beach, D.B.Goyal, A.Lee, D.F.Kang, B.W.Heatherly, L.Specht, E.D.Leonard, K.J. et al. , Physica C 378-381 (2002) p.1009.Google Scholar
45Shoup, S.S.Paranthaman, M.Goyal, A.Specht, E.D.Lee, D.F.Kroeger, D.M. and Beach, D.B.J.Am. Ceram. Soc. 81 (1998) p.3019.Google Scholar
46Rupich, M.W.Palm, W.Zhang, W.Siegal, E.Annavarapu, S.Fritzemeier, L.Teplitsky, M.D.Thieme, C. and Paranthaman, M.IEEE Trans. Appl. Supercond. 9 (1999) p.1527.CrossRefGoogle Scholar
47Paranthaman, M.P.Lee, D.F.Kroeger, D.M. and Goyal, A. U.S. Patent Nos. 6,150,034 (November 21, 2000), 6,156,376 (December 5, 2000), and 6,159,610 (December 12, 2000).Google Scholar
48Paranthaman, M.P.Aytug, T.Sathyamurthy, S.Leonard, K.J. and Goyal, A. in Proc. of the 106th Amer. Ceram. Soc. Meeting (the American Ceramic Society, Westerville, OH, 2004) in press.Google Scholar
49Paranthaman, M.Bhuiyan, M.S.Sathyamurthy, S.Zhai, H.Y.Goyal, A. and Salama, K. J. Mater. Res. (2004) submitted for publication.Google Scholar
50Chirayil, T.G.Paranthaman, M.Beach, D.B.Morrell, J.S.Sun, E.Y.Goyal, A.Williams, R.K.Lee, D.F.Martin, P.M.Kroeger, D.M.Feenstra, R.Verebelyi, D.T. and Christen, D.K.Mat. Res. Soc. Symp. Proc. 574, Warrendale, PA, 1999), p.51.Google Scholar
51Lee, D.F.Paranthaman, M.Mathis, J.E.Goyal, A.Kroeger, D.M.Specht, E.D.Williams, R.K.List, F.A.Martin, P.M.Park, C.Norton, D.P. and Christen, D.K.Jpn. J. Appl. Phys., Part 2 38 (1999) p.L178.Google Scholar
52List, F.A.Goyal, A.Paranthaman, M.Norton, D.P.Specht, E.D.Lee, D.F. and Kroeger, D.M.Physica C 302 (1998) p.87.Google Scholar
53Skakle, J.M.S.Mater. Sci. Eng. R23 (1998) p.1.CrossRefGoogle Scholar
54Jackson, T.J.Glowacki, B.A. and Evetts, J.E.Physica C 296 (1998) p.215.Google Scholar
55Schlom, D.G.Anselmetti, D.Bednorz, J.G.Broom, R.F.Catana, A.Frey, T.Gerber, C.Guentherodt, H.J.Lang, H.P. and Mannhart, J.Z.Phys. B: Condens. Matter 86 (1992) p.163.Google Scholar
56Koster, G. G.Rjinders, J.H.M.Blank, D.H.A. and Rogalla, H.Appl. Phys. Lett. 74 (1999) p.3729.CrossRefGoogle Scholar
57Paranthaman, M.P. in Second Generation HTS Conductors, edited by Goyal, A. (Plenum, New York, 2004) in press.Google Scholar
58Sathyamurthy, S.Paranthaman, M.Zhai, H.Y.Kang, S.Aytug, T.Cantoni, C.Leonard, K.J.Payzant, E.A.Christen, H.M. and Goyal, A.J.Mater. Res. 19 (2004) p.2117.Google Scholar
59Cantoni, C.Christen, D.K.Goyal, A.Heatherly, L.List, F.A.Ownby, G.W.Zehner, D.M.Christen, H.M. and Rouleau, C.M.IEEE Trans. Appl. Supercond. 13 (2003) p.2646.Google Scholar
60Watanabe, T.Matsumoto, K.Maeda, T.Tanigawa, T. and Hirabayashi, I.Physica C 357-360 (2001) p.914.Google Scholar
61Rupich, M.W.Schoop, U.Verebelyi, D.T.Thieme, C.Zhang, W.Li, X.Kodenkandath, T.Nguyen, N.Siegal, E.Buczek, D.Lynch, J.Jowett, M.Thompson, E. J.-Wang, S.Scudiere, J.Malozemoff, A.P.Li, Q.Annavarapu, S.Cui, S.Fritzemeier, L.Aldrich, B.Craven, C.Niu, F.Schwall, R.Goyal, A. and Paranthaman, M.IEEE Trans. Appl. Supercond. 13 (2003) p.2458.CrossRefGoogle Scholar
62Verebelyi, D.T.Harley, E.Scudiere, J.Otto, A.Schoop, U.Thieme, C.Rupich, M. and Malozemoff, A.Supercond. Sci. Technol. 16 (2003) p.1158.CrossRefGoogle Scholar
63Specht, E.D.Goyal, A. and Kroeger, D.M.Supercond. Sci. Tech 13 (2003) p.592.Google Scholar
64Rutter, N.Goyal, A. in High Temperature Superconductivity 1, edited by Narlikar, A.V. (Springer, New York, 2004) p. 377.Google Scholar
65Verebelyi, D.T.Schoop, U.Thieme, C.Li, X.Zhang, W.Kodenkandath, T.Malozemoff, A.P.Nguyen, N.Siegal, E.Buczek, D.Lynch, J.Scudiere, J.Rupich, M.Goyal, A.Specht, E.D.Martin, P. and Paranthaman, M.Supercond. Sci Technol. 16 (2003) p. L19.CrossRefGoogle Scholar
66Gouge, M.J.Lue, J.W.Demko, J.A.Duckworth, R.C.Fisher, P.W.Daumling, M.Lindsay, D.T.Roden, M.L. and Tolbert, J.C. in Proc. of CEC-ICMC Meeting, Anchorage, Alaska, September 22–26, (2004) in press.Google Scholar