Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T12:48:54.376Z Has data issue: false hasContentIssue false

Polymeric Facilitated Transport Membranes for Hydrogen Purification

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The most widely used method of hydrogen production, steam methane reforming, yields a product stream consisting mainly of hydrogen (H2) and carbon dioxide (CO2). Purification of this product is currently accomplished using amine-based acid gas scrubbers or pressure swing adsorption technology. Membranes are well suited to bulk CO2 removal and offer a viable alternative to these established technologies. This review considers one type of such membranes, polymeric facilitated transport membranes. These membranes selectively permeate CO2 by means of a reversible reaction between the gas and the membrane material. In addition, the membrane provides a barrier to H2 permeation. The result is removal of the CO2 contaminant and recovery of the H2 product at high pressure, eliminating the need for recompression prior to use or storage. A wide range of polymeric materials have been investigated, including ion-exchange resins, hydrophilic polymers blended with CO2-reactive salts, polyelectrolytes, fixed-site carrier polymers, and biomimetic materials. This review provides a description of the reaction chemistry of facilitated transport, a summary of membrane permselective properties, and suggestions for future research efforts.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gunardson, H. Industrial Gases in Petrochemical Processing (Marcel Dekker, New York, 1998).Google Scholar
2 Molburg, J.C. and Doctor, R.D. “Hydrogen from Steam-Methane Reforming with CO2 Capture,” presented at the 20th Annu. Int. Pittsburgh Coal Conf. (Pittsburgh, PA, September 15-19, 2003).Google Scholar
3 Bredesen, R. Jordal, K. and Bolland, O. Chem. Eng. Proc. 43 (2004) p. 1129.CrossRefGoogle Scholar
4 Cussler, E.L. in Polymeric Gas Separation Membranes, Ch. 6, edited by Paul, D.R. and Yampol'skii, Y.P. (CRC Press, Boca Raton, FL, 1994) P. 280.Google Scholar
5 LeBlanc, O.H. Ward, W.J. Matson, S.L. and Kimura, S.G. J. Membr. Sci. 6 (1980) P. 339.CrossRefGoogle Scholar
6 Kimura, S.G. Ward, W.J. and Matson, S.L. “Facilitated separation of a select gas through an ion-exchange membrane,” U.S. Patent No. 4,318, 714 (March 9, 1982).Google Scholar
7 Way, J.D. and Noble, R.D. in Membrane Handbook, edited by Ho, W.S.W. and Sirkar, K.K. (Van Nostrand Reinhold, New York, 1992) P. 833.CrossRefGoogle Scholar
8 Way, J.D. Noble, R.D. Reed, D.L. Ginley, G.M. and Jarr, L.A. AIChE J. 33 (1987) P. 480.CrossRefGoogle Scholar
9 Way, J.D. and Hapke, R.L. Proc. ACS Fuel Chem. Div. Meet. 33 (1988) P. 283.Google Scholar
10 Pelligrino, J.J. Nassimbene, R. Ko, M. and Noble, R.D. in Proc. 9th Annu. Gasification & Gas Stream Cleanup Systems Contractors Rev. Meet., Vol. I, edited by Johnson, R.A. and Dorchak, T.P. (1989) P. 211.Google Scholar
11 Noble, R.D. Pellegrino, J.J. Grosgogeat, E. Sperry, D. and Way, J.D. Sep. Sci. Technol. 23 (1988) P. 1595.Google Scholar
12 Langevin, D. Pinoche, M. Selegny, E. Metayer, M. and Roux, R. J. Membr. Sci. 82 (1993) P. 51.Google Scholar
13 Kim, M. Park, Y. Youm, K. and Lee, K. J. Membr. Sci. 245 (2004) P. 79.Google Scholar
14 Matsuyama, H. Teramoto, M. and Iwai, K. J. Membr. Sci. 93 (1994) P. 237.Google Scholar
15 Matsuyama, H. Teramoto, M. Sakakura, H. and Iwai, K. J. Membr. Sci. 117 (1996) P. 251.Google Scholar
16 Matsuyama, H. Teramoto, M. Matsui, K. and Kitaura, Y. J. Appl. Polym. Sci. 81 (2001) P. 936.Google Scholar
17W.Ho, S.W. “Membranes comprising salts of amino acids in hydrophilic polymers,” U.S. Patent No. 5,611,843 (March 18, 1997).Google Scholar
18 Ho, W.S.W. “Membranes comprising amino acid salts in polyamine polymers and blends,” U.S. Patent No. 6,099,621 (August 8, 2000).Google Scholar
19 Ho, W.S.W. “CO2-selective membrane process and system for reforming a fuel to hydrogen for a fuel cell,” U.S. Patent No. 6,579,331 (June 17, 2003).Google Scholar
20 Quinn, R. Laciak, D.V. and Pez, G.P. “Process for separating acid gases from gaseous mixtures utilizing composite membranes formed from salt-polymer blends,” U.S. Patent No. 6,315,968 (November 13, 2001).Google Scholar
21 Quinn, R. Laciak, D.V. Appleby, J.B. and Pez, G.P. “Polyelectrolyte membranes for the separation of acid gases,” U.S. Patent No. 5,336,298 (August 9, 1994).Google Scholar
22 Quinn, R. and Laciak, D.V. J. Membr. Sci. 131 (1997) P. 49.CrossRefGoogle Scholar
23 Quinn, R. J. Membr. Sci. 139 (1998) P. 97.Google Scholar
24 Quinn, R. Laciak, D.V. and Pez, G.P. J. Membr. Sci. 131 (1997) P. 61.CrossRefGoogle Scholar
25 Matsuyama, H. Teramoto, M. and Sakakura, H. J. Membr. Sci. 114 (1996) P. 193.CrossRefGoogle Scholar
26 Yoshikawa, M. Fujimoto, K. Kinugawa, H. Kitao, T. Kamiya, Y. and Ogata, N. J. Appl. Polym. Sci. 58 (1995) P. 1771.Google Scholar
27 Zhang, Y. Wang, Z. and Wang, S. J. Appl. Polym. Sci. 86 (2002) P. 2222.Google Scholar
28 Zhang, Y. Wang, Z., and Wang, S. Chem. Lett. (2002) P. 430.Google Scholar
29 Matsuyama, H. Terada, A. Nakagawara, T. Kitamura, Y. and Teramoto, M. J. Membr. Sci. 163 (1999) P. 221.Google Scholar
30 Kim, T.J. Li, B. and Hägg, M.B., J. Polym. Sci. B42 (2004) P. 4326.Google Scholar
31 Hägg, M.B., Kim, T.J. and Li, B. “Membrane for separating CO2 and process for the production thereof,” WO Patent No. 2005089907 (September 29, 2005).Google Scholar
32 Kocherginsky, N.M. Osak, I.S. Bromberg, L.E. Karyagin, V.A. and Moshkovsky, Y.S. J. Membr. Sci. 30 (1987) P. 39.Google Scholar
33 Kocherginsky, N.M. Bromberg, L.E. and Leskin, G.S. translated from Zhurnal Fizichesko Kimii 61 (1987) P. 1609.Google Scholar
34 Trachtenberg, M.C. “Enzyme systems for gas processing,” U.S. Patent No. 6,143,556 (November 7, 2000).Google Scholar
35 Trachtenberg, M.C. presented at Conf. Adv. Membr. Technol. (Engineering Foundation Conference, Barga, Italy, 2001).Google Scholar
36 Mulder, M. Basic Principles of Membrane Technology, 2nd ed. (Kluwer Academic Publishers, Dordrecht, 1996) p. 340.Google Scholar