Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T13:04:11.777Z Has data issue: false hasContentIssue false

Polymer Membranes for Hydrogen Separations

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The development of a hydrogen-based economy would generate a substantial necessity for efficient means of collecting hydrogen with a relatively high purity. Membrane separations play a major role in the separation of hydrogen gas from various gas mixtures, and this article discusses the use of polymeric materials to produce these membranes. After a review of the historical use of polymeric membranes and some background information regarding mechanisms of gas transport in membranes, this article will review the work that has been done in the two major classes of hydrogen separation membranes: hydrogen-selective membranes and hydrogen-rejective membranes. In hydrogen-selective membranes, the very small size of the hydrogen molecule is exploited to allow rapid diffusion of hydrogen through the membrane while excluding other gases. Hydrogen-rejective membranes use the significantly higher sorption of other gases to overcome the advantages of the small size of the hydrogen molecule. The discussion of these two types of membranes will be followed by a presentation of the current state of the art with regard to polymeric membranes for hydrogen separation and a discussion of the predictions for future applications and advancements in this area.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Weller, S. and Steiner, W.A. Chem. Eng. Progress 46 (11) (1950) p.585.Google Scholar
2 Zolandz, R.R. and Fleming, G.K. in Membrane Handbook, edited by Ho, W.S.W. and Sirkar, K.K. (Chapman and Hall, New York, 1992) p.78.Google Scholar
3 Koros, W.J. and Mahajan, R. J. Membr. Sci. 175 (2) (2000) p.181.Google Scholar
4 Gardner, R.J. Crane, R.A. and Hannan, J.F. Chem. Eng. Progress 73 (10) (1977) p.76.Google Scholar
5 Henis, J.M.S. and Tripodi, M.K. “Multicom-ponent membranes for gas separations,” U.S. Patent 4,230,463 (October 28, 1980).Google Scholar
6 Schell, W.J. and Houston, C.D. Chem. Eng. Progress 78 (10) (1982) p.33.Google Scholar
7 Bollinger, W.A. Long, S.P. and Metzger, T.R. Chem. Eng. Progress 80 (5) (1984) p.51.Google Scholar
8 Bollinger, W.A. Maclean, D.L. and Narayan, R.S. Chem. Eng. Progress 78 (10) (1982) p.27.Google Scholar
9 Agrawal, R. Offutt, M. and Ramage, M.P. AIChE J. 51 (6) (2005) p.1582.Google Scholar
10 Farrauto, R. Hwang, S. Shore, L. Ruet-tinger, W., Lampert, J. Giroux, T. Liu, Y. and Ilinich, O. Annu. Rev. Mater. Res. 33 (2003) p. 1.CrossRefGoogle Scholar
11 Forsberg, C.W. Chem. Eng. Progress 101 (12) (2005) p.20.Google Scholar
12 Ramage, M.P. The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs (National Research Council of the National Academies, 2004) p.ES1.Google Scholar
13 Simbeck, D.R. Energy 29 (9-10) (2004) p.1633.Google Scholar
14 Summers, W.A. and Gorensek, M.B. Chem. Eng. Progress 101 (3) (2005) p.4.Google Scholar
15 Winter, C.J. Int. J. Hydrogen Energy 30 (7) (2005) p.681.Google Scholar
16 Sato, S. and Nagai, K. Membrane 30 (1) (2005) p.20.Google Scholar
17 Knudsen, M. in Physical Subjects (Methuen, London, 1952).Google Scholar
18 Hines, A.L. and Maddox, R.N. Mass Transfer (Prentice Hall, Upper Saddle River, NJ, 1985) p.553.Google Scholar
19 Hwang, S.T. and Kammerme, K. Can. J.Chem. Eng. 44 (2) (1966) p.82.CrossRefGoogle Scholar
20 Lee, K.H. and Hwang, S.T. J. Coll. Interface Sci. 110 (2) (1986) p.544.Google Scholar
21 Masaryk, J.S. and Fulrath, R.M. J. Chem. Phys. 59 (3) (1973) p.1198.Google Scholar
22 Baker, R.W. Membrane Technology and Applications (McGraw-Hill, New York, 2000).Google Scholar
23 Koros, W.J. and Fleming, G.K. J. Membr. Sci. 83 (1) (1993) p.1.Google Scholar
24 Rautenbach, R. and Albrecht, R. Membrane Processes (John Wiley & Sons, Chichester, UK, 1989).Google Scholar
25 Stern, S.A. J.Membr. Sci. 94 (1994) p.1.Google Scholar
26 Vu, D.Q. Koros, W.J. and Miller, S.J. J.Membr. Sci. 211 (2) (2003) p.311.Google Scholar
27 Singh, A. and Koros, W.J. Ind. Eng. Chem. Res. 35 (4) (1996) p.1231.Google Scholar
28 Lin, H. and Freeman, B.D. J.Membr. Sci. 239 (1) (2004) p.105.CrossRefGoogle Scholar
29 Reid, R.C. Prausnitz, J.M. and Poling, B.E. The Properties of Gases and Liquids, 4th ed. (McGraw-Hill, Boston, 1987) p.752.Google Scholar
30 Robeson, L.M. J. Membr. Sci. 62 (2) (1991) p.165.Google Scholar
31 Aitken, C.L. Koros, W.J. and Paul, D.R. Macromolecules 25 (14) (1992) p.3651.Google Scholar
32 Aitken, C.L. Koros, W.J. and Paul, D.R. Macromolecules 25 (13) (1992) p.3424.CrossRefGoogle Scholar
33 Aitken, C.L. Paul, D.R. and Mohanty, D.K. J. Polym. Sci.: Part B-Polym. Phys. 31 (8) (1993) p.983.Google Scholar
34 Aitkin, C.L. and Paul, D.R. J.Polym. Sci.: Part B-Polym. Phys. 31 (8) (1993) p.1061.Google Scholar
35 Bixler, H.J. and Sweeting, O.J. in The Science and Technology of Polymer Films, edited by Sweeting, O.J. (Wiley Interscience, New York, 1971) p.1.Google Scholar
36 Fritsch, D. and Peinemann, K.V. J. Membr. Sci. 99 (1) (1995) p.29.Google Scholar
37 Hofman, D. Ulbrich, J. Fritsch, D. and Paul, D. Polymer 37 (21) (1996) p.4773.Google Scholar
38 Kita, H. Tabuchi, M. and Sakai, T. “Polymer separation membrane,” U.S. Patent 6,656,252 B2 (December 2, 2003).Google Scholar
39 McHattie, J.S. Koros, W.J. and Paul, D.R. Polymer 32 (14) (1991) p.2618.CrossRefGoogle Scholar
40 McHattie, J.S. Koros, W.J. and Paul, D.R. J. Polym. Sci.: Part B-Polym. Phys. 29 (6) (1991) p.731.Google Scholar
41 McHattie, J.S. Koros, W.J. and Paul, D.R. Polymer 32 (5) (1991) p.840.CrossRefGoogle Scholar
42 McHattie, J.S. Koros, W.J. and Paul, D.R. Polymer 33 (8) (1992) p.1701.Google Scholar
43 Min, K.E. and Paul, D.R. J. Polym. Sci.: Part B-Polym. Phys. 26 (5) (1988) p.1021.Google Scholar
44 Mohr, J.M. Paul, D.R. and Koros, W.J. J.Membr. Sci. 56 (1) (1991) p.77.CrossRefGoogle Scholar
45 Mohr, J.M. Paul, D.R. Tullos, G.L. and Cassidy, P.E. Polymer 32 (13) (1991) p.2387.Google Scholar
46 Nagasaki, Y. Suda, M. Tsuruta, T. Ishi-hara, K., and Makromol, Y. Nagase. Chem.-Rapid Commun. 10 (6) (1989) p.255.CrossRefGoogle Scholar
47 Srinivasan, R. Auvil, S.R. and Burban, P.M. J.Membr. Sci. 86 (1-2) (1994) p.67.Google Scholar
48 Stern, S.A. Mi, Y. Yamamoto, H. and Clair, A.K. St., J.Polym. Sci.: Part B-Polym. Phys. 27 (9) (1989) p.1887.Google Scholar
49 Takada, K. Matsuya, H. Masuda, T. and Higashimura, T. J. Appl. Polym. Sci. 30 (4) (1985) p.1605.CrossRefGoogle Scholar
50 Tanaka, K. Kita, H. Okano, M. and Okamoto, K. Polymer 33 (3) (1992) p.585.Google Scholar
51 Yamamoto, H. Mi, Y. Stern, S.A. and Clair, A.K. St., J. Polym. Sci.: Part B-Polym. Phys. 28 (12) (1990) p.2291.Google Scholar
52 Kita, H. Inada, T. Tanaka, K. and Okamoto, K. J. Membr. Sci. 87 (1-2) (1994) p. 139.CrossRefGoogle Scholar
53 Liu, Y. Ding, M.X. and Xu, J.P. J. Appl. Polym. Sci. 58 (3) (1995) p.485.Google Scholar
54 Rezac, M.E. and Schoberl, B. J. Membr. Sci. 156 (2) (1999) p.211.CrossRefGoogle Scholar
55 Wright, C.T. and Paul, D.R. J.Membr. Sci. 129 (1) (1997) p.47.CrossRefGoogle Scholar
56 Ekiner, O.M. “Gas separation membranes of blends of polyethersulfones with aromatic polyimides,” U.S. Patent 5,917,137 (June 29, 1999).Google Scholar
57 MacKinnon, S.M. “Process for preparing graft copolymers and membranes formed therefrom,” U.S. Patent 6,828,386 B2 (December 7, 2004).Google Scholar
58 Nakanishi, S. Yoshinaga, T. Ito, K. and Kusuki, Y. “Gas separation membrane and method for its use,” U.S. Patent 6,464,755 B2 (October 15, 2002).Google Scholar
59 Simmons, J.W. “Block polyurethane-ether and polyurea-ether gas separation membranes,” U.S. Patent 6,843,829 B2 (January 18, 2005).Google Scholar
60 Simmons, J.W. “Block polyester-ether gas separation membranes,” U.S. Patent 6,860,920 B2 (March 1, 2005).Google Scholar
61 Ding, Y. Bikson, B. and Nelson, J.K. “Polymide gas separation membranes,” U.S. Patent 6,790,263 (September 14, 2004).Google Scholar
62 Kawakami, H. Nagaoka, S. Suzuki, Y. and Iwaki, M. “Gas separation membrane and method of producing the same,” U.S. Patent 6,709,491 B2 (March 23, 2004).Google Scholar
63 Baker, R.W. Pinnau, I. Z.He, A.R. Da Costa, Daniels, R. Amo, K.D. and Wijmans, J.G. “Gas separation using organic-vapor-resistant membranes in conjunction with organic-vapor-selective membranes,” U.S. Patent 6,572,697 B2 (June 3, 2003).Google Scholar
64 Bikson, B. Bartholomew, S.A. Giglia, S. and Johnson, B.Q. “Hollow fiber membrane gas separation cartridge and gas purification assembly,” U.S. Patent 6,814,780 B2 (November 9, 2004).Google Scholar
65 Engler, Y. and Fuentes, F. “Plant for the production of hydrogen and of energy,” U.S. Patent 5,989,501 (November 23, 1999).Google Scholar
66 Fuentes, F. “Installation for the production of pure hydrogen from a gas containing helium,” U.S. Patent 6,669,922 B1 (December 30, 2003).Google Scholar
67 Lokhandwala, K.A. and Baker, R.W. “Hydrogen/hydrocarbon separation process, including PSA and membranes,” U.S. Patent 6,592,749 (July 15, 2003).Google Scholar
68 Siadous, N. Engler, Y. and Monereau, C. “Method for separating a gas mixture with a permeation membrane unit,” U.S. Patent 6,977,007 B2 (December 20, 2005).Google Scholar
69 Wallace, P.S. Kasbaum, J.L. and Johnson, K.A. “Hydrogen recycle and acid gas removal using a membrane,” U.S. Patent 6,416,568 B1 (July 9, 2002).Google Scholar
70 Yamashita, N. and Yamamoto, T. “Method and apparatus for recovering a gas from a gas mixture,” U.S. Patent 6,197,090 B1 (March 6, 2001).Google Scholar
71FutureGen coalition formed,” Power Eng. 109 (10) (2005) p.16.Google Scholar
72 Peltier, R. Power 147 (4) (2003) p.52.Google Scholar
73 Williams, M.C. Strakey, J.P. and Sur-doval, W.A., J.Power Sources 143 (1-2) (2005) p.191.CrossRefGoogle Scholar
74 Merkel, T.C. Gupta, R.P. Turk, B.S. and Freeman, B.D. J.Membr. Sci. 191 (1-2) (2001) p.85.Google Scholar
75 Pinnau, I. and He, Z.J. J. Membr. Sci. 244 (1-2) (2004) p.227.Google Scholar
76 Hirayama, Y. Kase, Y. Tanihara, R. Sumiyama, Y. Kusuki, Y. and Haraya, K. J.Membr. Sci. 160 (1) (1999) p.87.Google Scholar
77 Nagai, K. Freeman, B.D. Cannon, A. and Allcock, H.R. J. Membr. Sci. 172 (1-2) (2000) p.167.Google Scholar
78 Nagai, K. and Nakagawa, T. in ACS Symp. Series (American Chemical Society, Washington, DC, 2004).Google Scholar
79 Suzuki, H. Tanaka, K. Kita, H. Okamoto, K. Hoshino, H. Yoshinaga, T. and Kusuki, Y. J.Membr. Sci. 146 (1) (1998) p.31.CrossRefGoogle Scholar
80 Kazama, S. Duan, S. Ohno, C. Kouketsu, T. Shimada, Y. Chowdhury, F.A. Fujiwara, I. Haraya, K. Nagai, K. Freeman, B.D. and Yamada, K. in Proc. 7th Int. Conf. Greenhouse Gas Control Technologies (Elsevier, 2005).Google Scholar
81 Nagai, K. Jpn. J. Polym. Sci. Tech. (Kobunshi Ronbunshu) 61 (2004) p.420.Google Scholar
82 Nagai, K. Membrane 29 (2004) p.42.Google Scholar
83 Anand, M. Langsam, M. Rao, M.B. and Sircar, S. J.Membr. Sci. 123 (1) (1997) p.17.CrossRefGoogle Scholar
84 Bondar, V.I. Freeman, B.D. and Pinnau, I. J. Polym. Sci.: Part B-Polym. Phys. 38 (15) (2000) p.2051.Google Scholar
85 Pinnau, I. Casillas, C.G. Morisato, A. and Freeman, B.D. J. Polym. Sci.: Part B-Polym. Phys. 34 (15) (1996) p.2613.Google Scholar
86 Raharjo, R.D. Lee, H.J. Freeman, B.D. Sakaguchi, T. and Masuda, T. Polymer 46 (17) (2005) p.6316.Google Scholar
87 Robeson, L.M. Burgoyne, W.F. Langsam, M. Savoca, A.C. and Tien, C.F. Polymer 35 (23) (1994) p.4970.Google Scholar
88 Makino, H. Kusuki, Y. Yoshida, H. and Nakamura, A. “Process for preparing aromatic polyimide semipermeable membranes,” U.S. Patent 4,378,324 (March 29, 1983).Google Scholar
89 Breck, D.W. Zeolite Molecular Sieves (John Wiley & Sons, New York, 1974) p.783.Google Scholar