Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T00:32:31.427Z Has data issue: false hasContentIssue false

Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Localized surface plasmon resonance (LSPR) excitation in silver and gold nanoparticles produces strong extinction and scattering spectra that in recent years have been used for important sensing and spectroscopy applications. This article describes the fabrication, characterization, and computational electrodynamics of plasmonic materials that take advantage of this concept.Two applications of these plasmonic materials are presented: (1) the development of an ultrasensitive nanoscale optical biosensor based on LSPR wavelength-shift spectroscopy and (2) the use of plasmon-sampled and wavelength-scanned surface-enhanced Raman excitation spectroscopy (SERES) to provide new insight into the electromagnetic-field enhancement mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Barnes, W.L., Dereux, A., and Ebbesen, T.W., Nature 424 (2003) p. 824.Google Scholar
2.Haynes, C.L., McFarland, A.D., Zhao, L., Van Duyne, R.P., Schatz, G.C., Gunnarsson, L., Prikulis, J., Kasemo, B., and Käll, M., J. Phys. Chem. B 107 (2003) p. 7337.Google Scholar
3.Maier, S.A., Kik, P.G., Atwater, H.A., Meltzer, S., Harel, E., Koel, B.E., and Requicha, A.A.G., Nature Mater. 2 (2003) p. 229.CrossRefGoogle Scholar
4.Haynes, C.L. and Van Duyne, R.P., Nano Lett. 3 (2003) p. 939.CrossRefGoogle Scholar
5.Lezec, H.J., Degiron, A., Devaux, E., Linke, R.A., Martin-Moreno, L., Garcia-Vidal, F.J., Ebbesen, T.W., Science 297 (2002) p. 820.CrossRefGoogle Scholar
6.Smith, L.H., Wasey, J.A.E., and Barnes, W.L., Appl. Phys. Lett. 84 (2004) p. 2986.CrossRefGoogle Scholar
7.Wedge, S., Wasey, J.A.E., Barnes, W.L., and Sage, I., Appl. Phys. Lett. 85 (2004) p. 182.CrossRefGoogle Scholar
8.Andrew, P. and Barnes, W.L., Science 306 (2004) p. 1002.CrossRefGoogle Scholar
9.Van Duyne, R.P., Science 306 (2004) p. 985.CrossRefGoogle Scholar
10.Pettinger, B., Ren, B., Picardi, G., Schuster, R., and Ertl, G., Phys. Rev. Lett. 92 096101(2004).CrossRefGoogle Scholar
11.Schatz, G.C. and Van Duyne, R.P., in Handbook of Vibrational Spectroscopy, Vol. 1 (Wiley, New York, 2002) p. 759.Google Scholar
12.Haes, A.J. and Van Duyne, R.P., Anal. Bioanal. Chem. 379 (2004) p. 920.CrossRefGoogle Scholar
13.Brockman, J.M., Nelson, B.P., and Corn, R.M., Ann. Rev. Phys. Chem. 51 (2000) p. 41.Google Scholar
14.Srituravanich, W., Fang, N., Sun, C., Luo, Q., and Zhang, X., Nano Lett. 4 (2004) p. 1085.CrossRefGoogle Scholar
15.Hulteen, J.C. and Van Duyne, R.P., J. Vac. Sci. Technol., A 13 (1995) p. 1553.CrossRefGoogle Scholar
16.Dick, L.A., McFarland, A.D., Haynes, C.L., and Van Duyne, R.P., J. Phys. Chem. B 106 (2002) p. 853.CrossRefGoogle Scholar
17.Litorja, M., Haynes, C.L., Haes, A.J., Jensen, T.R., and Van Duyne, R.P., J. Phys. Chem. B 105 (2001) p. 6907.Google Scholar
18.Jensen, T.R., Malinsky, M. Duval, Haynes, C.L., and Van Duyne, R.P., J. Phys. Chem. B 104 (2000) p. 10549.Google Scholar
19.Jensen, T.R., Van Duyne, R.P., Johnson, S.A., and Maroni, V.A., Appl. Spectrosc. 54 (2000) p. 371.CrossRefGoogle Scholar
20.Michaels, A.M., Nirmal, M., and Brus, L.E., J. Am. Chem. Soc. 121 (1999) p. 9932.CrossRefGoogle Scholar
21.Schultz, S., Smith, D.R., Mock, J.J., and Schultz, D.A., Proc. Natl. Acad. Sci. U.S.A. 97 (2000) p. 996.Google Scholar
22.Yguerabide, J. and Yguerabide, E.E., Anal. Biochem. 262 (1998) p. 157.CrossRefGoogle Scholar
23.Kreibig, U. and Vollmer, M., Optical Properties of Metal Clusters, Vol. 25 (Springer-Verlag, Heidelberg, Germany, 1995).CrossRefGoogle Scholar
24.Haynes, C.L. and Van Duyne, R.P., J. Phys. Chem. B 105 (2001) p. 5599.CrossRefGoogle Scholar
25.Draine, B.T. and Goodman, J.J., Astrophys. J. 405 (1993) p. 685.CrossRefGoogle Scholar
26.Draine, B.T. and Flatau, P.J., J. Opt. Soc. Am. A 11 (1994) p. 1491.CrossRefGoogle Scholar
27.Yang, W.-H., Schatz, G.C., and Van Duyne, R.P., J. Chem. Phys. 103 (1995) p. 869.CrossRefGoogle Scholar
28.Jensen, T.R., Duval, M.L., Kelly, L., Lazarides, A., Schatz, G.C., and Van Duyne, R.P., J. Phys. Chem. B 103 (1999) p. 9846.CrossRefGoogle Scholar
29.Malinsky, M. Duval, Kelly, L., Schatz, G.C., and Van Duyne, R.P., J. Am. Chem. Soc. 123 (2001) p. 1471.CrossRefGoogle Scholar
30.Haes, A.J., Zou, S., Schatz, G.C., and Van Duyne, R.P., J. Phys. Chem. B 108 (2004) p. 6961.CrossRefGoogle Scholar
31.Jung, L.S., Campbell, C.T., Chinowsky, T.M., Mar, M.N., and Yee, S.S., Langmuir 14 (1998) p. 5636.CrossRefGoogle Scholar
32.McFarland, A.D. and Van Duyne, R.P., Nano Lett. 3 (2003) p. 1057.CrossRefGoogle Scholar
33.Haes, A.J., Zou, S., Schatz, G.C., and Van Duyne, R.P., J. Phys. Chem. B 108 (2004) p. 109.CrossRefGoogle Scholar
34.Haes, A.J. and R.P Van Duyne, J. Am. Chem. Soc. 124 (2002) p. 10596.CrossRefGoogle Scholar
35.Riboh, J.C., Haes, A.J., McFarland, A.D., Yonzon, C.R., and Van Duyne, R.P., J. Phys. Chem. B 107 (2003) p. 1772.CrossRefGoogle Scholar
36.Yonzon, C.R., Jeoung, E., Zou, S., Schatz, G.C., Mrksich, M., and Van Duyne, R.P., J. Am. Chem. Soc. 126 (2004) p. 12669.CrossRefGoogle Scholar
37.Haes, A.J., Hall, W.P., Chang, L., Klein, W.L., and Van Duyne, R.P., Nano Lett. 4 (2004) p. 1029.CrossRefGoogle Scholar
38.Haes, A.J., Chang, L., Klein, W.L., and Van Duyne, R.P., J. Am. Chem. Soc. 127 (2005) p. 2264.CrossRefGoogle Scholar
39.Raschke, G., Kowarik, S., Franzl, T., Soennichsen, C., Klar, T.A., Feldmann, J., Nichtl, A., and Kuerzinger, K., Nano Lett. 3 (2003) p. 935.CrossRefGoogle Scholar
40.Van Duyne, R.P., Haes, A.J., and McFarland, A.D., Proc. SPIE–The International Society for Optical Engineering 5223 (2003) p. 197.Google Scholar
41.Jeanmaire, D.L. and Van Duyne, R.P., J. Electroanal. Chem. 84 (1977) p. 1.CrossRefGoogle Scholar
42.Haynes, C.L. and Van Duyne, R.P., J. Phys. Chem. B 107 (2003) p. 7426.CrossRefGoogle Scholar
43.Nie, S. and Emory, S.R., Science 275 (1997) p. 1102.CrossRefGoogle Scholar
44.Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R., and Feld, M.S., Phys. Rev. Lett. 78 (1997) p. 1667.CrossRefGoogle Scholar
45.Liao, P.F., Bergman, J.G., Chemla, D.S., Wokaun, A., Melngailis, J., Hawryluk, A.M., and Economou, N.P., Chem. Phys. Lett. 81 (1981) p. 355.CrossRefGoogle Scholar
46.Howard, R.E., Liao, P.F., Skocpol, W.J., Jackel, L.D., and Craighead, H.G., Science 221 (1983) p. 117.CrossRefGoogle Scholar
47.Felidj, N., Truong, S.L., Aubard, J., Levi, G., Krenn, J.R., Hohenau, A., Leitner, A., and Aussenegg, F.R., J. Chem. Phys. 120 (2004) p. 7141.Google Scholar
48.McFarland, A.D., “Using Nanoparticle Optics for Ultrasensitive Chemical Detection and Surface-Enhanced Spectroscopy,” PhD thesis, Northwestern University, 2004.Google Scholar
49.McFarland, A.D., Young, M.A., Dieringer, J.A., and Van Duyne, R.P., J. Phys. Chem. B 109 (2005) accepted.CrossRefGoogle Scholar
50.Hao, E. and Schatz, G.C., J. Chem. Phys. 120 (2004) p. 357.CrossRefGoogle Scholar
51.Zou, S., Janel, N., and Schatz, G.C., J. Chem. Phys. 120 (2004) p. 10871.CrossRefGoogle Scholar