Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T21:59:30.904Z Has data issue: false hasContentIssue false

Piezotronic modulations in electro- and photochemical catalysis

Published online by Cambridge University Press:  10 December 2018

Xudong Wang
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin–Madison, USA; xudong.wang@wisc.edu
Gregory S. Rohrer
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, USA; gr20@andrew.cmu.edu
Hexing Li
Affiliation:
Shanghai University of Electric Power, China; HeXing-Li@shnu.edu.cn
Get access

Abstract

Electrochemical catalyst design and optimization primarily relies on understanding and facilitating interfacial charge transfer. Recently, piezotronics have emerged as a promising method for tuning the interfacial energetics. The unique band-engineering capability using piezoelectric or ferroelectric polarization could lead to performance gains for electrochemical catalysis beyond what can be achieved by chemical or structural optimization. This article addresses the fundamentals of surface polarization and corresponding band modulation at solid–liquid interfaces. The most recent advances in piezotronic modulations are discussed from multiple perspectives of catalysis, including photocatalytic, photoelectrochemical, and electrochemical processes, particularly for energy-related applications. The concept of piezocatalysis, a direct conversion of mechanical energy to chemical energy, is introduced with an example of mechanically driven water splitting. While still in the early stages, piezotronics is envisioned to become a powerful tool for revolutionizing electrochemical catalysis.

Type
Piezotronics and Piezo-Phototronics
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, X., Zhou, J., Song, J., Liu, J., Xu, N., Wang, Z.L., Nano Lett. 6, 2768 (2006).CrossRefGoogle Scholar
Wang, Z.L., Adv. Mater. 19, 889 (2007).CrossRefGoogle Scholar
Wang, Z.L., Piezotronics and Piezo-Phototronics (Springer-Verlag, Berlin, 2013).Google Scholar
Wu, W., Wang, Z.L., Nat. Rev. Mater. 1, 16031 (2016).CrossRefGoogle Scholar
Wang, Z.L., Adv. Mater. 24, 4632 (2012).CrossRefGoogle Scholar
Wang, X.D., Am. Ceram. Soc. Bull. 92, 18 (2013).Google Scholar
Starr, M.B., Wang, X., Nano Energy 14, 296 (2015).CrossRefGoogle Scholar
Starr, M.B., Shi, J., Wang, X., Angew. Chem. Int. Ed. Engl. 51, 5962 (2012).CrossRefGoogle Scholar
Guo, Y.X., Siretanu, I., Zhang, Y.H., Mei, B., Li, X.W., Mugele, F., Huang, H.W., Mul, G., J. Mater. Chem. A 6, 7500 (2018).CrossRefGoogle Scholar
Song, W., Salvador, P.A., Rohrer, G.S., Surf. Sci. 675, 83 (2018).CrossRefGoogle Scholar
Shi, J., Starr, M.B., Xiang, H., Hara, Y., Anderson, M.A., Seo, J.-H., Ma, Z., Wang, X., Nano Lett. 11, 5587 (2011).CrossRefGoogle Scholar
Yeredla, R.R., Xu, H., J. Phys. Chem. C 112, 532 (2008).CrossRefGoogle Scholar
Schultz, A., Zhang, Y., Salvador, P., Rohrer, G., ACS Appl. Mater. Interfaces 3, 1562 (2011).CrossRefGoogle Scholar
Giocondi, J.L., Rohrer, G.S., J. Phys. Chem. B 105, 8275 (2001).CrossRefGoogle Scholar
Dunn, S., Jones, P.M., Gallardo, D.E., J. Am. Chem. Soc. 129, 8724 (2007).CrossRefGoogle Scholar
Pisat, A.S., Rohrer, G.S., Salvador, P.A., J. Mater. Chem. A 5, 8261 (2017).CrossRefGoogle Scholar
Munprom, R., Salvador, P.A., Rohrer, G.S., Chem. Mater. 26, 2774 (2014).CrossRefGoogle Scholar
Giocondi, J.L., Rohrer, G.S., J. Am. Ceram. Soc. 86, 1182 (2003).CrossRefGoogle Scholar
Zhu, Y.S., Salvador, P.A., Rohrer, G.S., Phys. Chem. Chem. Phys. 19, 7910 (2017).CrossRefGoogle Scholar
Burbure, N.V., Salvador, P.A., Rohrer, G.S., Chem. Mater. 22, 5823 (2010).CrossRefGoogle Scholar
Zhang, Y.L., Schultz, A.M., Salvador, P.A., Rohrer, G.S., J. Mater. Chem. 21, 4168 (2011).CrossRefGoogle Scholar
Zhu, Y.S., Salvador, P.A., Rohrer, G.S., ACS Appl. Mater. Interfaces 9, 7843 (2017).CrossRefGoogle Scholar
Li, L., Rohrer, G.S., Salvador, P.A., J. Am. Ceram. Soc. 95, 1414 (2012).CrossRefGoogle Scholar
Li, L., Zhang, Y.L., Schultz, A.M., Liu, X., Salvador, P.A., Rohrer, G.S., Catal. Sci. Technol. 2, 1945 (2012).CrossRefGoogle Scholar
German, L.N., Starr, M.B., Wang, X., Adv. Electron. Mater. 4, 1700395 (2018).CrossRefGoogle Scholar
Kakekhani, A., Ismail-Beigi, S., Altman, E.I., Surf. Sci. 650, 302 (2016).CrossRefGoogle Scholar
Khan, M.A., Nadeem, M.A., Idrissn, H., Surf. Sci. Rep. 71, 1 (2016).CrossRefGoogle Scholar
Li, L., Salvador, P.A., Rohrer, G.S., Nanoscale 6, 24 (2014).CrossRefGoogle Scholar
Tiwari, D., Dunn, S., J. Mater. Sci. 44, 5063 (2009).CrossRefGoogle Scholar
Morris, M.R., Pendlebury, S.R., Hong, J., Dunn, S., Durrant, J.R., Adv. Mater. 28, 7123 (2016).CrossRefGoogle Scholar
Glickstein, J.J., Salvador, P.A., Rohrer, G.S., J. Mater. Chem. A 4, 16085 (2016).CrossRefGoogle Scholar
Munprom, R., Salvador, P.A., Rohrer, G.S., J. Mater. Chem. A 4, 2951 (2016).CrossRefGoogle Scholar
Cui, Y.F., Briscoe, J., Dunn, S., Chem. Mater. 25, 4215 (2013).CrossRefGoogle Scholar
Li, H., Sang, Y., Chang, S., Huang, X., Zhang, Y., Yang, R., Jiang, H., Liu, H., Wang, Z.L., Nano Lett. 15, 2372 (2015).CrossRefGoogle Scholar
Zhang, Y., Liu, C., Zhu, G., Huang, X., Liu, W., Hu, W., Song, M., He, W., Liu, J., Zhai, J., RSC Adv. 7, 48176 (2017).CrossRefGoogle Scholar
Chen, X., Liu, L., Feng, Y., Wang, L., Bian, Z., Li, H., Wang, Z.L., Mater. Today 20, 501 (2017).CrossRefGoogle Scholar
Li, H., Yu, Y., Starr, M.B., Li, Z., Wang, X., J. Phys. Chem. Lett. 6, 3410 (2015).CrossRefGoogle Scholar
Yang, W., Yu, Y., Starr, M.B., Yin, X., Li, Z., Kvit, A., Wang, S., Zhao, P., Wang, X., Nano Lett. 15, 7574 (2015).CrossRefGoogle Scholar
Cui, W., Xia, Z., Wu, S., Chen, F., Li, Y., Sun, B., ACS Appl. Mater. Interfaces 7, 25601 (2015).CrossRefGoogle Scholar
Wu, F., Yu, Y., Yang, H., German, L.N., Li, Z., Chen, J., Yang, W., Huang, L., Shi, W., Wang, L., Wang, X., Adv. Mater. 29, 1701432 (2017).CrossRefGoogle Scholar
Chen, X., German, L., Bong, J., Yu, Y., Starr, M., Qin, Y., Ma, Z., Wang, X., Nano Energy 48, 377 (2018).CrossRefGoogle Scholar
Starr, M.B., Wang, X., Sci. Rep. 3, 2160 (2013).CrossRefGoogle Scholar
Feng, Y., Ling, L., Wang, Y., Xu, Z., Cao, F., Li, H., Bian, Z., Nano Energy 40, 481 (2017).CrossRefGoogle Scholar