Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T14:46:48.285Z Has data issue: false hasContentIssue false

The piezoelectronic transistor: A nanoactuator-based post-CMOS digital switch with high speed and low power

Published online by Cambridge University Press:  12 November 2012

D.M. Newns
Affiliation:
IBM Research Division, T.J. Watson Research Center; dmnewns@watson.ibm.com
B.G. Elmegreen
Affiliation:
IBM Research Division, T.J. Watson Research Center; bge@us.ibm.com
X.-H. Liu
Affiliation:
IBM Research Division, T.J. Watson Research Center; xhliu@us.ibm.com
G.J. Martyna
Affiliation:
IBM Research Division, T.J. Watson Research Center; martyna@us.ibm.com
Get access

Abstract

Moore’s law of transistor scaling, the exponential increase in the number of complementary metal oxide semiconductor (CMOS) transistors per unit area, continues unabated; however, computer clock speeds have remained frozen since 2003. The development of a new digital switch, the piezoelectronic transistor (PET), is designed to circumvent the speed and power limitations of the CMOS transistor. The PET operates on a novel principle: an electrical input is transduced into an acoustic pulse by a piezoelectric element which, in turn, is used to drive a continuous insulator-to-metal transition in a piezoresistive element, thus switching on the device. Performance is enabled by the use of key high response materials, a relaxor piezoelectric, and a rare-earth chalcogenide piezoresistor. Theory and simulation predict, using bulk material properties, that PETs can operate at one-tenth the present voltage of CMOS technology and consuming 100 times less power while running at multi-GHz clock speeds. A program to fabricate prototype PET devices is under way.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baccarani, G., Wordeman, M.R., Dennard, R.H., IEEE Trans. Electron Devices 31, 425 (1984).CrossRef
Haensch, W., Nowak, E.J., Dennard, R.H., Solomon, P.M., Bryant, A., Dokumaci, O.H., Kumar, A., Wang, X., Johnson, J.B., Fischetti, M.V., IBM J. Res. Dev. 50, 339 (2006).CrossRef
Theis, T., Solomon, P., Science 327 1600 (2010).CrossRef
Theis, T., Solomon, P., Proc. IEEE 98, 2005 (2010).CrossRef
Banerjee, S., Richardson, W., Coleman, J., Chatterjee, A., IEEE Electron Device Lett. 8, 347 (1987).CrossRef
Salahuddin, S., Datta, S., Nano Lett. 8, 405 (2008).CrossRef
Kopp, T., Mannhart, J., J. Appl. Phys. 106, 064504 (2009).CrossRef
Datta, S., Das, B., Appl. Phys. Lett. 56, 665 (1990).CrossRef
Buettiker, M., Imry, Y., Landauer, R., Pinhas, S., Phys. Rev. B 31, 6207 (1985).CrossRef
Park, S.-E., Shrout, T.R., J. Appl. Phys. 82, 15 (1997).
Li, F., Zhang, S., Xu, Z., Wei, X., Luo, J., Shrout, T.R., J. Appl. Phys. 108, 034106 (2010).CrossRef
Baek, S.H., Park, J., Kim, D.M., Aksyuk, V.A., Das, R.R., Bu, S.D., Felker, D.A., Lettieri, J., Vaithyanathan, V., Bharadwaja, S.S.N., Bassiri-Gharb, N., Chen, Y.B., Sun, H.P., Folkman, C.M., Jang, H.W., Kreft, D.J., Streiffer, S.K., Ramesh, R., Pan, X.Q., Trolier-McKinstry, S., Schlom, D.G., Rzchowski, M.S., Blick, R.H., Eom, C.B., Science 334, 958 (2011).CrossRef
Jayaraman, A., Narayanamurti, V., Bucher, E., Maines, R.G., Phys. Rev. Lett. 25, 1430 (1970).CrossRef
Jayaraman, A., Maines, R.G., Phys. Rev. B 19, 4154 (1979).CrossRef
Newns, D.M., Elmegreen, B.G., Liu, X.-H., Martyna, G.J., Adv. Mat. 24 3672 (2012).CrossRef
Newns, D.M., Elmegreen, B.G., Liu, X.-H., Martyna, G.J., J. Appl. Phys. 111, 084509 (2012).CrossRef
Iwata, M., Orihara, H., Ishibashi, Y., Ferroelectrics, 266, 57 (2002).CrossRef
Davis, M., Budimir, M., Damjanovic, D., Setter, N., J. Appl. Phys. 101, 054112 (2007).CrossRef
Highland, M.J., Fister, T.T., Richard, M.-I., Fong, D.D., Fuoss, P.H., Thompson, C., Eastman, J.A., Streiffer, S.K., Stephenson, G.B., Phys. Rev. Lett. 105, 167601 (2010).CrossRef
Kholkin, A.L., Colla, E.L., Tagantsev, A.K., Taylor, D.V., Setter, N., Appl. Phys. Lett. 68, 29 (1996).CrossRef
Elmegreen, B.G., Martyna, G.J., Newns, D.M., Solomon, P., “4-Terminal Piezoelectronic Transistor,” US Patent application, YOR920110425US1.
Landau, L.D., Lifschitz, E.M., Theory of Elasticity: Course of Theoretical Physics (Butterworth-Heinemann, London, UK, 1986), Vol. 7.Google Scholar
Tiersten, F., Linear Piezoelectric Plate Vibration: Elements of the Linear Theory of Piezo-Electricity and the Vibrations of Piezoelectric Plates (Plenum Press, NY, 1969).Google Scholar
Chen, Y., Sci. China Ser. A 38, 65 (1995).
Zhang, R., Jiang, B., Cao, W., J. Appl. Phys. 90, 3471 (2001).CrossRef
Gupta, D.C., Kulshrestha, S., J. Phys. Condens. Matter 21, 436011 (2009).CrossRef