Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T01:26:56.380Z Has data issue: false hasContentIssue false

Particles at fluid–fluid interfaces: From single-particle behavior to hierarchical assembly of materials

Published online by Cambridge University Press:  12 December 2014

Bum Jun Park
Affiliation:
Department of Chemical Engineering, Kyung Hee University, South Korea; bjpark@khu.ac.kr
Daeyeon Lee
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Pennsylvania, USA; daeyeon@seas.upenn.edu
Get access

Abstract

Particles ranging in size from a few nanometers to tens of micrometers have a strong tendency to adsorb at interfaces between two immiscible fluids (e.g., water and oil or air). The driving force for this strong interfacial attachment is a reduction in interfacial area, and thus, interfacial energy. To design and engineer the structure and properties of materials constructed by such colloidal systems, it is imperative to understand the behavior of particles at fluid interfaces at the single-particle level and to establish the relationship between the microscopic behavior of interfacial particles and the bulk properties of particle-laden interfaces. In this article, we present background information on the behavior of particles at fluid–fluid interfaces and highlight recent advances in understanding the effects of particle shape and surface wettability on the behavior of particles at the interfaces. We also discuss recent advances in using interfacial attachment to direct the assembly of nanomaterials to create hierarchical structures with designed properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Binks, B.P., Horozov, T.S., Colloidal Particles at Liquid Interfaces (Cambridge University Press, New York, 2006).Google Scholar
Trahar, W., Warren, L., Int. J. Miner. Process. 3, 103 (1976).CrossRefGoogle Scholar
Crawford, R., Ralston, J., Inter. J. Miner. Process. 23, 1 (1988).Google Scholar
Dickinson, E., Curr. Opin. Colloid Interface Sci. 15, 40 (2010).CrossRefGoogle Scholar
Frelichowska, J., Bolzinger, M.-A., Pelletier, J., Valour, J.-P., Chevalier, Y., Int. J. Pharm. 371, 56 (2009).CrossRefGoogle Scholar
Frelichowska, J., Bolzinger, M.-A., Valour, J.-P., Mouaziz, H., Pelletier, J., Chevalier, Y., Int. J. Pharm. 368, 7 (2009).Google Scholar
Sullivan, A.P., Kilpatrick, P.K., Ind. Eng. Chem. Res. 41, 3389 (2002).CrossRefGoogle Scholar
Crossley, S., Faria, J., Shen, M., Resasco, D.E., Science 327, 68 (2010).Google Scholar
Roberts, G.G., Langmuir–Blodgett Films (Plenum Press, New York, 1990).Google Scholar
Brugarolas, T., Tu, F., Lee, D., Soft Matter 9, 9046 (2013).Google Scholar
Lam, S., Blanco, E., Smoukov, S.K., Velikov, K.P., Velev, O.D., J. Am. Chem. Soc. 133, 13856 (2011).Google Scholar
Kim, J., Cote, L.J., Kim, F., Yuan, W., Shull, K.R., Huang, J., J. Am. Chem. Soc. 132, 8180 (2010).Google Scholar
Murakami, R., Moriyama, H., Yamamoto, M., Binks, B.P., Rocher, A., Adv. Mater. 24, 767 (2012).CrossRefGoogle Scholar
Guo, P., Song, H., Chen, X., J. Mater. Chem. 20, 4867 (2010).Google Scholar
Shao, J.J., Lv, W., Yang, Q.H., Adv. Mater. 26, 5586 (2014).Google Scholar
Studart, A.R., Gonzenbach, U.T., Akartuna, I., Tervoort, E., Gauckler, L.J., J. Mater. Chem. 17, 3283 (2007).Google Scholar
Liu, B., Wei, W., Qu, X., Yang, Z., Angew. Chem. Int. Ed. 120, 4037 (2008).Google Scholar
Kumar, A., Park, B.J., Tu, F., Lee, D., Soft Matter 9, 6604 (2013).CrossRefGoogle Scholar
Walther, A., Muller, A.H.E., Soft Matter 4, 663 (2008).Google Scholar
Hu, J., Zhou, S., Sun, Y., Fang, X., Wu, L., Chem. Soc. Rev. 41, 4356 (2012).Google Scholar
Ruhland, T.M., Gröschel, A.H., Walther, A., Müller, A.H.E., Langmuir 27, 9807 (2011).Google Scholar
Binks, B.P., Curr. Opin. Colloid Interface Sci. 7, 21 (2002).Google Scholar
Madivala, B., Fransaer, J., Vermant, J., Langmuir 25, 2718 (2009).Google Scholar
Lewandowski, E.P., Cavallaro, M., Botto, L., Bernate, J.C., Garbin, V., Stebe, K.J., Langmuir 26, 15142 (2010).Google Scholar
Lewandowski, E.P., Searson, P.C., Stebe, K.J., J. Phys. Chem. B 110, 4283 (2006).Google Scholar
Glotzer, S.C., Solomon, M.J., Nat. Mater. 6, 557 (2007).Google Scholar
Chen, Q., Whitmer, J.K., Jiang, S., Bae, S.C., Luijten, E., Granick, S., Science 331, 199 (2011).Google Scholar
de Gennes, P.G., Rev. Mod. Phys. 64, 645 (1992).CrossRefGoogle Scholar
Binks, B.P., Fletcher, P.D.I., Langmuir 17, 4708 (2001).Google Scholar
Casagrande, C., Fabre, P., Raphael, E., Veyssié, M., Europhys. Lett. 9, 251 (1989).Google Scholar
Jiang, S., Granick, S., J. Chem. Phys. 127, 161102 (2007).Google Scholar
Park, B.J., Choi, C.-H., Kang, S.-M., Tettey, K.E., Lee, C.-S., Lee, D., Soft Matter 9, 3383 (2013).CrossRefGoogle Scholar
Park, B.J., Choi, C.-H., Kang, S.-M., Tettey, K.E., Lee, C.-S., Lee, D., Langmuir 29, 1841 (2013).CrossRefGoogle Scholar
Park, B.J., Lee, D., ACS Nano 6, 782 (2012).CrossRefGoogle Scholar
Park, B.J., Lee, D., Soft Matter 8, 7690 (2012).CrossRefGoogle Scholar
Fan, H., Resasco, D.E., Striolo, A., Langmuir 27, 5264 (2011).Google Scholar
Ondarçuhu, T., Fabre, P., Raphaël, E., Veyssié, M., J. Phys. Fr. 51, 1527 (1990).Google Scholar
Rezvantalab, H., Shojaei-Zadeh, S., Soft Matter 9, 3640 (2013).CrossRefGoogle Scholar
Park, B.J., Vermant, J., Furst, E.M., Soft Matter 6, 5327 (2010).Google Scholar
Pieranski, P., Phys. Rev. Lett. 45, 569 (1980).Google Scholar
Hurd, A.J., J. Phys. A: Math. Gen. 45, L1055 (1985).CrossRefGoogle Scholar
Aveyard, R., Clint, J.H., Nees, D., Paunov, V.N., Langmuir 16, 1969 (2000).CrossRefGoogle Scholar
Aveyard, R., Binks, B.P., Clint, J.H., Fletcher, P.D.I., Horozov, T.S., Neumann, B., Paunov, V.N., Annesley, J., Botchway, S.W., Nees, D., Parker, A.W., Ward, A.D., Burgess, A.N., Phys. Rev. Lett. 88, 246102 (2002).CrossRefGoogle Scholar
Park, B.J., Pantina, J.P., Furst, E.M., Oettel, M., Reynaert, S., Vermant, J., Langmuir 24, 1686 (2008).Google Scholar
Masschaele, K., Park, B.J., Furst, E.M., Fransaer, J., Vermant, J., Phys. Rev. Lett. 105, 048303 (2010).Google Scholar
Oettel, M., Dietrich, S., Langmuir 24, 1425 (2008).Google Scholar
Danov, K.D., Kralchevsky, P.A., Naydenov, B.N., Brenn, G., J. Colloid Interface Sci. 287, 121 (2005).Google Scholar
Kralchevsky, P.A., Nagayama, K., Langmuir 10, 23 (1994).Google Scholar
Park, B.J., Furst, E.M., Soft Matter 7, 7676 (2011).Google Scholar
Stamou, D., Duschl, C., Johannsmann, D., Phys. Rev. E 62, 5263 (2000).Google Scholar
Botto, L., Lewandowski, E.P., Cavallaro, M., Stebe, K.J., Soft Matter 8, 9957 (2012).Google Scholar
Botto, L., Yao, L., Leheny, R.L., Stebe, K.J., Soft Matter 8, 4971 (2012).Google Scholar
Brugarolas, T., Park, B.J., Lee, D., Adv. Funct. Mater. 21, 3924 (2011).Google Scholar
Loudet, J.C., Alsayed, A.M., Zhang, J., Yodh, A.G., Phys. Rev. Lett. 94, 018301 (2005).Google Scholar
Loudet, J.C., Pouligny, B., Europhys. Lett. 85, 28003 (2009).Google Scholar
Reynaert, S., Moldenaers, P., Vermant, J., Langmuir 22, 4936 (2006).Google Scholar
Park, B.J., Furst, E.M., Langmuir 24, 13383 (2008).Google Scholar
Park, B., Furst, E., Macromol. Res. 21, 1167 (2013).Google Scholar
Feick, J.D., Chukwumah, N., Noel, A.E., Velegol, D., Langmuir 20, 3090 (2004).Google Scholar
Park, B.J., Furst, E.M., Soft Matter 7, 7683 (2011).Google Scholar
Yunker, P.J., Still, T., Lohr, M.A., Yodh, A., Nature 476, 308 (2011).Google Scholar
Cavallaro, M., Botto, L., Lewandowski, E.P., Wang, M., Stebe, K.J., Proc. Natl. Acad. Sci. U.S.A. 108, 20923 (2011).Google Scholar
Park, B.J., Brugarolas, T., Lee, D., Soft Matter 7, 6413 (2011).Google Scholar
Wang, J.-Y., Wang, Y., Sheiko, S.S., Betts, D.E., DeSimone, J.M., J. Am. Chem. Soc. 134, 5801 (2011).Google Scholar
Kuhn, H., Möbius, D., Bücher, H., in Physical Methods of Chemistry, Weissberger, A., Rossiter, B.W., Eds. (Wiley, New York, 1972), vol. 1, part 3B, p. 577.Google Scholar
Binks, B.P., Murakami, R., Nat. Mater. 5, 865 (2006).CrossRefGoogle Scholar
Dinsmore, A.D., Hsu, M.F., Nikolaides, M.G., Marquez, M., Bausch, A.R., Weitz, D.A., Science 298, 1006 (2002).CrossRefGoogle Scholar
Lee, D., Weitz, D.A., Small 5, 1932 (2009).Google Scholar
Blanco, E., Lam, S., Smoukov, S.K., Velikov, K.P., Khan, S.A., Velev, O.D., Langmuir 29, 10019 (2013).Google Scholar
Fameau, A.-L., Lam, S., Velev, O.D., Chem. Sci. 4, 3874 (2013).Google Scholar
Lee, S.H., Kim, H.W., Hwang, J.O., Lee, W.J., Kwon, J., Bielawski, C.W., Ruoff, R.S., Kim, S.O., Angew. Chem. Int. Ed. 122, 10282 (2010).Google Scholar
Torquato, S., Soft Matter 5, 1157 (2009).Google Scholar