Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T01:05:39.077Z Has data issue: false hasContentIssue false

Opportunities for mesoscale science

Published online by Cambridge University Press:  12 November 2012

G.W. Crabtree
Affiliation:
Materials Science Division, Argonne National Laboratory; crabtree@anl.gov
J.L. Sarrao
Affiliation:
Los Alamos National Laboratory; sarrao@lanl.gov
Get access

Abstract

The regime of mesoscale science, where the granularity of atoms and quantization of energy gives way to apparently continuous and infinitely divisible matter and energy, yields strikingly complex architectures, phenomena, and functionalities that control macroscopic material behavior. Research in mesoscale materials and chemical science is an opportunity space for next-generation discovery, science, technology, and innovation, with promise of new solutions for societal problems such as energy, environment, climate, advanced manufacturing, and economic growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

“Nanosciences and nanotechnologies: An action plan for Europe 2005–2009” (European Commission, 2005).Google Scholar
Roco, M.C., Mirkin, C.A., Hersam, M.C., in The National Nanotechnology Initiative at Five Years: Assessment and Recommendations of the National Nanotechnology Advisory Panel, PCAST, 2005; Nanotechnology Research Directions for Societal Needs in 2020 (Springer, Berlin and Boston, 2010).Google Scholar
Ice, G.E., Budai, J.D., Pang, J.W.L., Science 334, 1234 (2011).CrossRefGoogle ScholarPubMed
Laughlin, R.B., Pines, D., PNAS 97, 28 (2000).CrossRefGoogle Scholar
Rolison, D.R., Long, J.W., Lytle, J.C., Fischer, A.E., Rhodes, C.P., McEvoy, T.M., Bourg, M.E., Lubers, A.M., Chem. Soc. Rev. 38, 226 (2009).CrossRefGoogle Scholar
Whitesides, G.M., Grzybowski, B., Science 295, 2418 (2002).CrossRefGoogle Scholar
MRS Bull. 33 (4), (2008).Google Scholar
“Materials for Key Enabling Technologies” (E-MRS, 2011).Google Scholar
Bader, S., APS News 21, 8 (2012).Google Scholar
Antonietti, M., Ozin, G.A., Chem. Eur. J. 10, 28 (2004).CrossRefGoogle Scholar
Griffiths, D.J., Introduction to Quantum Mechanics (2nd ed.) (Prentice Hall, NJ, 2004).Google Scholar
Dagotto, E., Science 309, 257 (2005).CrossRefGoogle Scholar
Skowronski, M., Ha, S., J. Appl. Phys. 99, 011101 (2006).CrossRefGoogle Scholar
Wei, J., Wang, Z., Chen, W., Cobden, D.H., Nat. Nanotechnol. 4, 420 (2009).CrossRefGoogle Scholar
Tayi, A.S., Shveyd, A.K., Sue, A.C.-H., Szarko, J.M., Rolczynski, B.S., Cao, D., Jackson Kennedy, T., Sarjeant, A.A., Stern, C.L., Paxton, W.F., Wu, W., Dey, S.K., Fahrenbach, A.C., Guest, J.R., Mohseni, H., Chen, L.X., Wang, K.L., Fraser Stoddart, J., Stupp, S.I., Nature 488, 485 (2012).CrossRefGoogle Scholar
Schreck, C.F., Mailman, M., Chakraborty, B., O’Hern, C.S., Phys. Rev. E 85, 061305 (2012).CrossRefGoogle Scholar
Rockstuhl, C., Menzel, C., Muhlig, S., Petschulat, J., Helgert, C., Etrich, C., Pertsch, T., Lederer, F., Phys. Rev. B 83, 245119 (2011).CrossRefGoogle Scholar
Yoshida, R., Colloid Polym. Sci. 289, 475 (2011).CrossRefGoogle Scholar
Ernst, S., Kirchner, S., Krellner, C., Geibel, C., Zwicknagl, G., Steglich, F., Wirth, S., Nature 474, 362 (2011).CrossRefGoogle Scholar
Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D., Energy Environ. Sci. 4, 3243 (2011).CrossRefGoogle Scholar
Tilley, S.D., Cornuz, M., Sivula, K., Graetzel, M., Angew. Chem. Int. Ed. 49, 6405 (2010).CrossRefGoogle Scholar
Ruhle, S., Shalom, M., Zaban, A., Chem. Phys. Chem. 11, 2290 (2010).CrossRefGoogle Scholar
Bader, S.D., Parkin, S.S.P., Annu. Rev. Condens. Matter Phys. 1, 71 (2010).CrossRefGoogle Scholar
Baek, S.H., Park, J., Kim, D.M., Aksyuk, V.A., Das, R.R., Bu, S.D., Felker, D.A., Lettieri, J., Vaithyanathan, V., Bharadwaja, S.S.N., Bassiri-Gharb, N., Chen, Y.B., Sun, H.P., Folkman, C.M., Jang, H.W., Kreft, D.J., Streiffer, S.K., Ramesh, R., Pan, X.Q., Trolier-McKinstry, S., Schlom, D.G., Rzchowski, M.S., Blick, R.H., Eom, C.B., Science 334, 958 (2011).CrossRefGoogle Scholar
Hamelin, C.J., Diak, B.J., Pilkey, A.K., Int. J. Plast. 27, 1185 (2011).CrossRefGoogle Scholar
French, R.H., Rodrıguez-Parada, J.M., Yang, M.K., Derryberry, R.A., Pfeiffenberger, N.T., Sol. Energy Mater. Sol. Cells 95, 2077 (2011).CrossRefGoogle Scholar
Hefferan, C.M., Lind, J., Li, S.F., Lienert, U., Rollett, A.D., Suter, R.M., Acta Mater. 60, 4311 (2012).CrossRefGoogle Scholar
Schaedler, T.A., Jacobsen, A.J., Torrents, A., Sorensen, A.E., Lian, J., Greer, J.R., Valdevit, L., Carter, W.B., Science 334, 962 (2011).CrossRefGoogle Scholar
Lefebvre, L.-P., Banhart, J., Dunand, D.C., Adv. Eng. Mater. 10, 775 (2008).CrossRefGoogle Scholar
Jiang, H.-L., Xu, Q., Chem. Commun. 47, 3351 (2011).CrossRefGoogle Scholar
Chen, J., Cheng, F., Accts. Chem. Res. 42, 713 (2009).CrossRefGoogle Scholar
Sun, C., Rajasekhara, S., Goodenough, J.B., Zhou, F., J. Am. Chem. Soc. 133, 2132 (2011).CrossRefGoogle Scholar
Larned, S.T., Freshwater Biol. 57, 885 (2012).CrossRefGoogle Scholar
Taron, J., Elsworth, D., Int. J. Rock Mech. Min. Sci. 47, 1339 (2010).CrossRefGoogle Scholar
New Research Opportunities in Dynamic Compression Science (Washington State University, 2012). Available atdcs-aps.wsu.edu.Google Scholar
Türeci, H.E., Hanl, M., Claassen, M., Weichselbaum, A., Hecht, T., Braunecker, B., Govorov, A., Glazman, L., Imamoglu, A., von Delft, J., Phys. Rev. Lett. 106, 107402 (2011).CrossRefGoogle Scholar
Vojta, M., J. Low Temp Phys 161, 203 (2010).CrossRefGoogle Scholar
Yu, R., Si, Q., Phys. Rev. B 84, 235115 (2011).CrossRefGoogle Scholar
Berg, E., Fradkin, E., Kivelson, S.A., Tranquada, J.M., New J. Phys. 11, 115004 (2009).CrossRefGoogle Scholar
Mizukami, Y., Shishido, H., Shibauchi, T., Shimozawa, M., Yasumoto, S., Watanabe, D., Yamashita, M., Ikeda, H., Terashima, T., Kontani, H., Matsuda, Y., Nat. Phys. 7, 849 (2011).CrossRefGoogle Scholar
Talapin, D.V., Shevchenko, E.V., Bodnarchuk, M.I., Ye, X., Chen, J., Murray, C.B., Nature 461, 964 (2009).CrossRefGoogle Scholar
Bates, F.S., Hillmyer, M.A., Lodge, T.P., Bates, C.M., Delaney, K.T., Fredrickson, G.H., Science 336, 434 (2012).CrossRefGoogle Scholar
Phillips, C.L., Anderson, J.A., Huber, G., Glotzer, S.C., Phys. Rev. Lett. 108, 198304 (2012).CrossRefGoogle Scholar
Frenkel, D., Wales, D.J., Nat. Mater. 10, 410 (2011).CrossRefGoogle Scholar
Ruiz, R., Kang, H., Detcheverry, F.A., Dobisz, E., Kercher, D.S., Albrecht, T.R., de Pablo, J.J., Nealey, P.F., Science 321, 936 (2008).CrossRefGoogle Scholar
Ghariehali, A.T.K., Gotrik, K.W., Hannon, A.F., Alexander-Katz, A., Ross, C.A., Berggren, K.K., Science 336, 1294 (2012).Google Scholar