Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T03:45:40.909Z Has data issue: false hasContentIssue false

Novel methods for in situ characterization of individual micro- and nanoscale magnetic particles

Published online by Cambridge University Press:  13 November 2013

John Moreland
Affiliation:
National Institute of Standards and Technology, Boulder, CO; moreland@boulder.nist.gov
Yoshihiro Nakashima
Affiliation:
National Institute of Standards and Technology, Boulder, CO; yoshihiro.nakashima@nist.gov
Jacob W. Alldredge
Affiliation:
National Institute of Standards and Technology, Boulder, CO; alldredg@boulder.nist.gov
Gary Zabow
Affiliation:
National Institute of Neurological Disorders and Stroke, Bethesda, MD; zabowg@mail.nih.gov
Get access

Abstract

New instrumentation is being developed to better understand the in vivo properties of magnetic particles suspended in solution or lodged in tissue. We describe three novel methods with the necessary sensitivity to measure the microscopic magnetic properties of individual magnetic particles and complexes quantitatively. The first method is based on proton nuclear magnetic resonance of a magnetic particle suspended in water in a microcapillary probe; the second method uses high-resolution magnetic resonance imaging of water surrounding a magnetic particle; and the third method is based on AC susceptometry with a magnetic cantilever that combines magnetic particle imaging concepts with probe microscopy. We present the physical basis for the measurements, estimate sensitivity limits, and discuss future impacts on the development of magnetic particles for bioimaging and bioassays.

Type
Magnetic Nanoparticles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

van Ommering, K., Nieuwenhuis, J.H., van Ijzendoorn, L.J., Koopmans, B. Prins, M.W.J., Appl. Phys. Lett. 89, 142511 (2006).CrossRefGoogle Scholar
van Ommering, K., Philips Research Technical Note 2006, 00116 (2006).Google Scholar
Wang, S.X., Li, G., IEEE Trans. Magn. 44, 1687 (2008).CrossRefGoogle Scholar
Gleich, B., Weizenecker, J., Nature 435, 1214 (2005).Google Scholar
Shapiro, E.M., Skrtic, S., Sharer, K., Hill, J.M., Dunbar, C.E., Koretsky, A.P., Proc. Natl. Acad. Sci. U.S.A. 101, 10901 (2004).CrossRefGoogle Scholar
Nakashima, Y., Boss, M., Russek, S.E., Moreland, J., Magn. Reson. 224, 71 (2012).CrossRefGoogle Scholar
Brown, R.J., Phys. Rev. 121, 1379 (1961).Google Scholar
Roch, A., Gossuin, Y., Muller, R.N., Gillis, P., Magn. Magn. Mater. 293, 532 (2005).CrossRefGoogle Scholar
Muller, R.N., Gillis, P., Moiny, F., Roch, A., Magn. Reson. Med. 22, 178 (1991).CrossRefGoogle Scholar
Brooks, R.A., Magn. Reson. Med. 47, 388 (2002).Google Scholar
Gillis, P., Moiny, F., Brooks, R.A., Magn. Reson. Med. 47, 257 (2002).Google Scholar
Fratila, R.M., Velders, A.H., Annu. Rev. Anal. Chem. 4, 227 (2011).CrossRefGoogle Scholar
Olson, D.L., Peck, T.L., Webb, A.G., Magin, R.L., Sweedler, J.V., Science 270, 1967 (1995).CrossRefGoogle Scholar
Weisskoff, R.M., Kiihne, S., Magn. Reson. Med. 24, 375 (1992).Google Scholar
Beuf, O., Briguet, A., Lissac, M., Davis, R., J. Magn. Reson. B 112, 111 (1996).CrossRefGoogle Scholar
Li, L., Magn. Reson. Med. 46, 907 (2001).CrossRefGoogle Scholar
Lüdeke, K.M., Röschmann, P., Tischler, R., Magn. Reson. Imaging 3, 329 (1985).Google Scholar
Ericsson, A., Hemmingsson, A., Jung, B., Sperber, G.O., Phys. Med. Biol. 33, 1103 (1988).CrossRefGoogle Scholar
Posse, S., Aue, W.P., J. Magn. Reson. 88, 473 (1990).Google Scholar
Bakker, C.J.G., Bhagwandien, R., Moerland, M.A., Ramos, L.M.P., Magn. Reson. Imaging 12, 767 (1994).Google Scholar
Zabow, G., Dodd, S.J., Shapiro, E., Moreland, J., Koretsky, A., Magn. Reson. Med. 65, 645 (2011).CrossRefGoogle Scholar
Alldredge, J.W., Moreland, J., J. Appl. Phys. 112, 023905 (2012).Google Scholar
Robert, D., Pamme, N., Conjeaud, H., Gazeau, F., Iles, A., Wilhelm, C., Lab Chip 11, 1902 (2011).CrossRefGoogle Scholar
Fannin, P.C., Scaife, B.K.P., Charles, S.W., J. Magn. Magn. Mater. 72, 95 (1988).CrossRefGoogle Scholar
Schaller, V., Wahnströmb, G., Sanz-Velasco, A., Enoksson, P., Johansson, C., J. Magn. Magn. Mater. 321, 1400 (2009).Google Scholar
Connolly, J., St Pierre, T.G., J. Magn. Magn. Mater. 225, 156 (2001).Google Scholar
Chung, S.-H., Hoffmann, A., Guslienko, K., Bader, S.D., Liu, C., Kay, B., Makowski, L., Chen, L., J. Appl. Phys. 97, 10R101 (2005).Google Scholar
Song, J.-O., Henry, R.M., Jacobs, R.M., Francis, L.F., Rev. Sci. Instrum. 81, 093903 (2010).CrossRefGoogle Scholar
Weizmann, Y., Patolsky, F., Katz, E., Willner, I., J. Am. Chem. Soc. 125, 3452 (2003).Google Scholar