Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T02:36:03.623Z Has data issue: false hasContentIssue false

Neutron Scattering Studies of Dynamics: A New Frontier in Materials Science

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Knowledge of the dynamic dimension of materials is an extremely important ingredient for understanding their properties. Neutron scattering is uniquely capable of revealing aspects of the atomic and molecular geometry of motions over a wide range of time scales. To illustrate this fact, we give a number of examples from different areas of materials science. We discuss the diffusion of hydrogen in protonic conductors; the hydration of portland cement; and aspects of the molecular rheology of polymers, emphasizing in particular the effect of branching. All of these experiments have added important basic information to the understanding of the respective systems. With the advent of the new megawatt neutron spallation sources, the role of neutron scattering in revealing the dynamical properties of materials is expected to increase substantially.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Haile, S.M., Mater. Today 6 (3) (2003) p. 24.CrossRefGoogle Scholar
2.Hempelmann, R., Quasielastic Neutron Scattering and Solid-State Diffusion (Oxford Science Publications, Oxford, 2000).CrossRefGoogle Scholar
3.Matzke, Th., Stimming, U., Karmonik, Ch., Soetratmo, M., Hempelmann, R., and Guthoff, F., Solid State Ionics 86–88 (1996) p. 621.CrossRefGoogle Scholar
4.Taylor, F.W., Cement Chemistry (Academic Press, London, 1990).Google Scholar
5.Le Chatelier, H.L., Experimental Researches on the Constitution of Hydraulic Mortars (McGraw, New York, 1905).Google Scholar
6.FitzGerald, S.A., Neumann, D.A., Rush, J.J., Bentz, D.P., and Livingston, R.A., Chem. Mater. 10 (1998) p. 397.CrossRefGoogle Scholar
7.Berliner, R., Popovici, M., Herwig, K.W., Berliner, M., Jennings, H.M., and Thomas, J.J., Cem. Concr. Res. 28 (1998) p. 231;CrossRefGoogle Scholar
Fratini, E., Chen, S.-H., Baglioni, P., and Bellissent, M.-C.-Funel, Phys. Rev. E 64 020201 (2001).CrossRefGoogle Scholar
8.Thomas, J.J., Fitz Gerald, S.A., Neumann, D.A., and Livingston, R.A., J. Am. Ceram. Soc. 84 (2001) p. 1811.CrossRefGoogle Scholar
9.FitzGerald, S.A., Neumann, D.A., Rush, J.J., Kirkpatrick, R.J., Cong, X., and Livingston, R.A., J. Mater. Res. 14 (1999) p. 1160.CrossRefGoogle Scholar
10.Thomas, J.J., Jennings, H.M., and Allen, A.J., Cem. Concr. Res. 28 (1998) p. 897.CrossRefGoogle Scholar
11.Doi, M. and Edwards, S.F., The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).Google Scholar
12.Mc, T.C.B.Leish, Adv. Phys. 51 (2002) p. 1379.Google Scholar
13.Richter, D., Farago, B., Fetters, L.J., Huang, J.S., Ewen, B., and Lartigue, C., Phys. Rev. Lett. 64 (1990) p. 1389.CrossRefGoogle Scholar
14.Schleger, P., Farago, B., Kollmar, A., Lartigue, C., and Richter, D., Phys. Rev. Lett. 81 (1998) p. 124.CrossRefGoogle Scholar
15.Wischnewski, A., Monkenbusch, M., Willner, L., Richter, D., Likthman, A., and McLeish, T.C.B., Phys. Rev. Lett. 88 058301 (2002).CrossRefGoogle Scholar
16.de Gennes, P.G., J. Phys. (Paris) 42 (1981) p. 735.CrossRefGoogle Scholar
17.Wischnewski, A., Monkenbusch, M., Willner, L., Richter, D., and Kali, G., Phys. Rev. Lett. 90 058302 (2003).CrossRefGoogle Scholar
18.Carella, J.M., Graessley, W.W., and Fetters, L.J., Macromolecules 17 (1984) p. 2775.CrossRefGoogle Scholar
19.Gotro, J.T. and Graessley, W.W., Macromole-cules 17 (1984) p. 2767.CrossRefGoogle Scholar
20.Lodge, T.P., Phys. Rev. Lett. 83 (1999) p. 3218.CrossRefGoogle Scholar
21.Millner, S.T. and McLeish, T.C.B., Phys. Rev. Lett. 81 (1998) p. 725.CrossRefGoogle Scholar
22.Heinrich, M., Pyckhout-Hintzen, W., Allgaier, J., Richter, D., Straube, E., Read, D.J., McLeish, T.C.B., Groves, D.J., Blackwell, R.J., and Wiedemann, A., Macromolecules 35 (2002) p. 6650.CrossRefGoogle Scholar