Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T02:31:13.413Z Has data issue: false hasContentIssue false

Nanoscale Materials for Lithium-Ion Batteries

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Template synthesis is a versatile nanomaterial fabrication method used to make monodisperse nanoparticles of a variety of materials including metals, semiconductors, carbons, and polymers. We have used the template method to prepare nanostructured lithium-ion battery electrodes in which nanofibers or nanotubes of the electrode material protrude from an underlying current-collector surface like the bristles of a brush. Nanostructured electrodes of this type composed of carbon, LiMn2O4, V2O5, tin, TiO2, and TiS2 have been prepared. In all cases, the nanostructured electrode showed dramatically improved rate capabilities relative to thin-film control electrodes composed of the same material. The rate capabilities are improved because the distance that Li+ must diffuse in the solid state (the current- and power-limiting step in Li-ion battery electrodes) is significantly smaller in the nanostructured electrode. For example, in a nanofiber-based electrode, the distance that Li+ must diffuse is restricted to the radius of the fiber, which may be as small as 50 nm. Recent developments in template-prepared nanostructured electrodes are reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Johnson, B.A. and White, R.E., J. Power Sources 70 (1998) p. 48.CrossRefGoogle Scholar
2.Bruce, P.G., Chem. Commun. (19) (1997) p. 1817.Google Scholar
3.Nagasubramanian, G. and Jungst, R.G., J. Power Sources 72 (1998) p. 189.CrossRefGoogle Scholar
4.Nagasubramanian, G., J. Appl. Electrochem. 31 (2001) p. 99.CrossRefGoogle Scholar
5.Tahara, K., Ishikawa, H., Iwasaki, F., Yahagi, S.S., Sakkata, A., and Sakai, T., European Patent Application No. 93111938 (1993).Google Scholar
6.Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y., and Miyasaki, T., Science 276 (1997) p. 1395.CrossRefGoogle Scholar
7.Besenhard, J.O., Yang, J., and Winter, M., J. Power Sources 68 (1997) p. 87.CrossRefGoogle Scholar
8.Courtney, I.A. and Dahn, J.R., J. Electrochem. Soc. 144 (1997) p. 2045.CrossRefGoogle Scholar
9.Yamada, A., Chung, S.C., and Hinokuma, K., J. Electrochem. Soc. 148 (2001) p. A224.CrossRefGoogle Scholar
10.Doeff, M.M., Anaplosky, A., Edman, L., Richardson, T.J., and De Jonghe, L.C., J. Electrochem. Soc. 148 (2001) p. A230.CrossRefGoogle Scholar
11.Myung, S.-T., Komaba, S., and Kumagai, N., J. Electrochem. Soc. 148 (2001) p. A482.Google Scholar
12.Yamada, A., Kudo, Y., and Liu, K.-Y., J. Elec-trochem. Soc. 148 (2001) p. A747.CrossRefGoogle Scholar
13.Mueller-Neuhaus, J.R., Dunlap, R.A., and Dahn, J.R., J. Electrochem. Soc. 147 (2000) p. 3598.CrossRefGoogle Scholar
14.Plichta, E.J., Hendrickson, M., Thompson, R., Au, G., Behl, W.K., Smart, M.C., Ratnakumar, B.V., and Surampudi, S., J. Power Sources 94 (2001) p. 160.CrossRefGoogle Scholar
15.Huang, H. and Wunder, S., J. Electrochem. Soc. 148 (2001) p. A279.CrossRefGoogle Scholar
16.Wang, X., Yasukawa, E., and Kasuya, S., J. Electrochem. Soc. 148 (2001) p. A1058.CrossRefGoogle Scholar
17.Lee, K.-H., Kim, K.-H., and Lim, H.S., J. Elec-trochem. Soc. 148 (2001) p. A1148.CrossRefGoogle Scholar
18.Croce, F., Appetecchi, G.B., Persi, L., and Scrosati, B., Nature 394 (1998) p. 456.CrossRefGoogle Scholar
19.Smart, M.C., Ratnakumar, B.V., and Surampudi, S., J. Electrochem. Soc. 146 (1999) p. 486.CrossRefGoogle Scholar
20.Moshtev, R. and Johnson, B., J. Power Sources 91 (2000) p. 86.CrossRefGoogle Scholar
21.Mitchell, D.T. and Martin, C.R., in Electro-analytical Chemistry, Vol. 21, edited by Bard, A.J. and Rubinstein, I. (Marcel Dekker, New York, 1999) p. 1.Google Scholar
22.Che, G., Lakshmi, B.B., Martin, C.R., Fisher, E.R., and Ruoff, R.A., Chem. Mater. 10 (1998) p. 260.CrossRefGoogle Scholar
23.Che, G., Fisher, E.R., and Martin, C.R., Nature 393 (1998) p. 346.CrossRefGoogle Scholar
24.Che, G., Lakshmi, B.B., Martin, C.R., and Fisher, E.R., Langmuir 15 (1999) p. 750.CrossRefGoogle Scholar
25.Nishizawa, M., Mukai, K., Kuwabata, S., Martin, C.R., and Yoneyama, H., J. Electrochem. Soc. 144 (1997) p. 1923.CrossRefGoogle Scholar
26.Li, N., Patrissi, C.J., and Martin, C.R., J. Electrochem. Soc. 147 (2000) p. 2044.CrossRefGoogle Scholar
27.Patrissi, C.J. and Martin, C.R., J. Electrochem. Soc. 146 (1999) p. 3176.CrossRefGoogle Scholar
28.Patrissi, C.J. and Martin, C.R., J. Electrochem. Soc. 148 (2001) p. A1247.CrossRefGoogle Scholar
29.Li, N., Martin, C.R., and Scrosati, B., Electrochem. Solid-State Lett. 3 (2000) p. 316.CrossRefGoogle Scholar
30.Martin, C.R., Li, N., and Scrosati, B., J. Power Sources 97–98 (2001) p. 240.Google Scholar
31.Li, N. and Martin, C.R., J. Electrochem. Soc. 148 (2001) p. A164.CrossRefGoogle Scholar
32.Lakshmi, B.B., Patrissi, C.J., and Martin, C.R., Chem. Mater. 9 (1997) p. 2544.CrossRefGoogle Scholar
33.Cepak, V.M., Hulteen, J.C., Che, G., Jirage, K.B., Lakshmi, B.B., Fisher, E.R., and Martin, C.R., J. Mater. Res. 13 (1998) p. 3070.CrossRefGoogle Scholar
34.Che, G., Jirage, K.B., Fisher, E.R., Martin, C.R., and Yoneyama, H., J. Electrochem. Soc. 144 (1997) p. 4296.CrossRefGoogle Scholar
35.Li, H., Shi, L., Lu, W., Huang, X., and Chen, L., J. Electrochem. Soc. 148 (2001) p. A915.CrossRefGoogle Scholar
36.Beaulieu, L.Y., Larcher, D., Dunlap, R.A., and Dahn, J.R., J. Electrochem. Soc. 147 (2000) p. 3206.CrossRefGoogle Scholar
37.Maurin, G., Henn, F., Simon, B., Colomer, J.F., and Nagy, J.B., Nano Lett. 1 (2001) p. 75.CrossRefGoogle Scholar
38.Mukhopadhyay, I., Hoshino, N., Kawasaki, S., Okino, F., Hsu, W.K., and Touhara, H., J. Electrochem. Soc. 149 (2002) p. A39.CrossRefGoogle Scholar
39.Spahr, M.E., Stoschitzki-Bitterli, P., Nespar, R., Haas, O., and Novak, P., J. Electrochem. Soc. 146 (1999) p. 2780.CrossRefGoogle Scholar
40.Sakamoto, J.S. and Dunn, B., J. Electrochem. Soc. 149 (2002) p. A26.CrossRefGoogle Scholar
41.Le, D.B., Passerini, S., Guo, J., Ressler, J., Owens, B.B., and Smyrl, W.H., J. Electrochem. Soc. 143 (1996) p. 2099.CrossRefGoogle Scholar
42.Parent, M.J., Passerini, S., Owens, B.B., and Smyrl, W.H., J. Electrochem. Soc. 146 (1999) p. 1346.CrossRefGoogle Scholar
43.Coustier, F., Passerini, S., and Smyrl, W.H., J. Electrochem. Soc. 145 (1998) p. L73.CrossRefGoogle Scholar
44.Liu, P., Zhang, J.-G., Tracy, E.E., and Turner, J.A., Electrochem. Solid-State Lett. 3 (2000) p. 163.CrossRefGoogle Scholar
45.Long, J.W., Qadir, L.R., Stroud, R.M., and Rolison, D.R., J Phys. Chem. B 105 (2001) p. 8712.CrossRefGoogle Scholar
46.Fleischer, R.L., Price, P.B., and Walker, R.M., Nuclear Tracks in Solids (University of California Press, Berkeley, 1975).CrossRefGoogle Scholar
47.Hornyak, G.L., Patrissi, C.J., and Martin, C.R., J. Phys. Chem. B 101 (1997) p. 1548.CrossRefGoogle Scholar
48.Brousse, T., Retoux, R., and Schleich, D., J. Electrochem. Soc. 145 (1998) p. 1.CrossRefGoogle Scholar
49.Dickens, P.G., French, S.J., Hight, A.T., and Pye, M.F., Mater. Res. Bull. 14 (1979) p. 1295.CrossRefGoogle Scholar