Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T02:29:13.276Z Has data issue: false hasContentIssue false

Nanogaps for SERS applications

Published online by Cambridge University Press:  12 February 2014

Lianming Tong
Affiliation:
Chinese Academy of Sciences; lianming.tong@iphy.ac.cn
Hongxing Xu
Affiliation:
Chinese Academy of Sciences; hxxu@iphy.ac.cn
Mikael Käll
Affiliation:
Chalmers University of Technology; mikael.kall@chalmers.se
Get access

Abstract

The nanogap is possibly the single most important physical entity in surface-enhanced Raman scattering. Nanogaps between noble metal nanostructures deliver extremely high electric field-enhancement, resulting in an extraordinary amplification of both the excitation rate and the emission rate of Raman active molecules situated in the gap. In some cases, the resulting surface-enhancement in the gap can be so high that Raman spectra from single molecules can be measured. Here, we briefly review some important concepts and experimental results on nanoscale gaps for SERS applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Haran, G., Acc. Chem. Res. 43, 1135 (2010).Google Scholar
Ward, D.R., Grady, N.K., Levin, C.S., Halas, N.J., Wu, Y.P., Nordlander, P., Natelson, D., Nano Lett. 7, 1396 (2007).Google Scholar
Willets, K.A., Van Duyne, R.P., Annu. Rev. Phys. Chem. 58, 267 (2007).Google Scholar
Lim, D.K., Jeon, K.S., Kim, H.M., Nam, J.M., Suh, Y.D., Nat. Mater. 9, 60 (2010).Google Scholar
Hanke, T., Cesar, J., Knittel, V., Trugler, A., Hohenester, U., Leitenstorfer, A., Bratschitsch, R., Nano Lett. 12, 992 (2012).Google Scholar
Abb, M., Albella, P., Aizpurua, J., Muskens, O.L., Nano Lett. 11, 2457 (2011).Google Scholar
Grigorenko, A.N., Roberts, N.W., Dickinson, M.R., Zhang, Y., Nat. Photonics 2, 365 (2008).Google Scholar
Zhang, W.H., Huang, L.N., Santschi, C., Martin, O.J.F., Nano Lett. 10, 1006 (2010).Google Scholar
Novotny, L., Hulst, N.V., Nat. Photonics 5, 83 (2011).Google Scholar
Biagioni, P., Huang, J.-S., Hecht, B., Rep. Prog. Phys. 75, 024402 (2012).Google Scholar
Kim, S., Jin, J., Kim, Y.-J., Park, I.-Y., Kim, Y., Kim, S.-W., Nature 453, 757 (2008).Google Scholar
Xu, H.X., Aizpurua, J., Käll, M., Apell, P., Phys. Rev. E 62, 4318 (2000).CrossRefGoogle Scholar
Schatz, G.C., Young, M.A., Van Duyne, R.P., Top. Appl. Phys. 103, 19 (2006).CrossRefGoogle Scholar
Xu, H.X., Bjerneld, E.J., Käll, M., Borjesson, L., Phys. Rev. Lett. 83, 4357 (1999).Google Scholar
Nie, S.M., Emery, S.R., Science 275, 1102 (1997).CrossRefGoogle Scholar
Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R., Feld, M.S., Phys. Rev. Lett. 78, 1667 (1997).Google Scholar
Pieczonka, N.P.W., Aroca, R.F., Chem. Soc. Rev. 37, 946 (2008).Google Scholar
Gunnarsson, L., Rindzevicius, T., Prikulis, J., Kasemo, B., Käll, M., Zou, S.L., Schatz, G.C., J. Phys. Chem. B 109, 1079 (2005).Google Scholar
Tabor, C., Murali, R., Mahmoud, M., El-Sayed, M.A., J. Phys. Chem. A 113, 1946 (2009).Google Scholar
Savage, K.J., Hawkeye, M.M., Esteban, R., Borisov, A.G., Aizpurua, J., Baumberg, J.J., Nature 491, 574 (2012).Google Scholar
Ciracì, C., Hill, R.T., Mock, J.J., Urzhumov, Y., Fernández-Domínguez, A.I., Maier, S.A., Pendry, J.B., Chilkoti, A., Smith, D.R., Science 337, 1072 (2012).Google Scholar
Scholl, J.A., Koh, A.L., Dionne, J.A., Nature 483, 421 (2012).Google Scholar
Xu, H.X., Bjerneld, E.J., Aizpurua, J., Apell, P., Gunnarsson, L., Petronis, S., Kasemo, B., Larsson, C., Höök, F., Käll, M., Proc. SPIE 4258, 35 (2001).Google Scholar
Jain, P.K., Huang, W.Y., El-Sayed, M.A., Nano Lett. 7, 2080 (2007).CrossRefGoogle Scholar
Ghosh, S.K., Pal, T., Chem. Rev. 107, 4797 (2007).Google Scholar
McMahon, J.M., Li, S.Z., Ausman, L.K., Schatz, G.C., J. Phys. Chem. C 116, 1627 (2012).Google Scholar
Moskovits, M., Rev. Mod. Phys. 57, 783 (1985).CrossRefGoogle Scholar
Metiu, H., Das, P., Annu. Rev. Phys. Chem. 35, 507 (1984).Google Scholar
Kerker, M., Acc. Chem. Res. 17, 271 (1984).Google Scholar
Gunnarsson, L., Bjerneld, E.J., Xu, H., Petronis, S., Kasemo, B., Käll, M., Appl. Phys. Lett. 78, 802 (2001).Google Scholar
Meyer, M., Le Ru, E.C., Etchegoin, P.G., J. Phys. Chem. B 110, 6040 (2006).Google Scholar
Brown, L.V., Sobhani, H., Lassiter, J.B., Nordlander, P., Halas, N.J., ACS Nano 4, 819 (2010).Google Scholar
Hao, E., Schatz, G.C., J. Chem. Phys. 120, 357 (2004).Google Scholar
Alexander, K.D., Skinner, K., Zhang, S.P., Wei, H., Lopez, R., Nano Lett. 10, 4488 (2010).Google Scholar
Shegai, T., Brian, B., Miljkovic, V.D., Käll, M., ACS Nano 5, 2036 (2011).Google Scholar
Shegai, T., Chen, S., Miljkovic, V.D., Zengin, G., Johansson, P., Käll, M., Nat. Commun. 2, 481 (2011).Google Scholar
Li, Z.P., Shegai, T., Haran, G., Xu, H.X., ACS Nano 3, 637 (2009).Google Scholar
Wustholz, K.L., Henry, A.I., McMahon, J.M., Freeman, R.G., Valley, N., Piotti, M.E., Natan, M.J., Schatz, G.C., Van Duyne, R.P., J. Am. Chem. Soc. 132, 10903 (2010).Google Scholar
Shegai, T., Li, Z.P., Dadosh, T., Zhang, Z.Y., Xu, H.X., Haran, G., Proc. Natl. Acad. Sci. U.S.A. 105, 16448 (2008).CrossRefGoogle Scholar
Taylor, R.W., Lee, T.C., Scherman, O.A., Esteban, R., Aizpurua, J., Huang, F.M., Baumberg, J.J., Mahajan, S., ACS Nano 5, 3878 (2011).CrossRefGoogle Scholar
Esteban, R., Taylor, R.W., Baumberg, J.J., Aizpurua, J., Langmuir 28, 8881 (2012).Google Scholar
Kneipp, J., Kneipp, H., McLaughlin, M., Brown, D., Kneipp, K., Nano Lett. 6, 2225 (2006).Google Scholar
Slaughter, L.S., Willingham, B.A., Chang, W.S., Chester, M.H., Ogden, N., Link, S., Nano Lett. 12, 3967 (2012).CrossRefGoogle Scholar
Svedberg, F., Li, Z.P., Xu, H.X., Käll, M., Nano Lett. 6, 2639 (2006).Google Scholar
Barrow, S.J., Wei, X., Baldauf, J.S., Funston, A.M., Mulvaney, P., Nat. Commun. 3, 1275 (2012).Google Scholar
Prikulis, J., Svedberg, F., Käll, M., Enger, J., Ramser, K., Goksor, M., Hanstorp, D., Nano Lett. 4, 115 (2004).Google Scholar
Tong, L.M., Miljkovic, V.D., Johansson, P., Käll, M., Nano Lett. 11, 4505 (2011).Google Scholar
Urban, A.S., Lutich, A.A., Stefani, F.D., Feldmann, J., Nano Lett. 10, 4794 (2010).CrossRefGoogle Scholar
Miljkovic, V.D., Pakizeh, T., Sepulveda, B., Johansson, P., Käll, M., J. Phys. Chem. C 114, 7472 (2010).Google Scholar
Li, Z.P., Käll, M., Xu, H., Phys. Rev. B 77, 085412 (2008).Google Scholar
Tong, L.M., Righini, M., Gonzalez, M.U., Quidant, R., Käll, M., Lab Chip 9, 193 (2009).Google Scholar
Wei, H., Hao, F., Huang, Y.Z., Wang, W.Z., Nordlander, P., Xu, H.X., Nano Lett. 8, 2497 (2008).Google Scholar
Wei, H., Hakanson, U., Yang, Z.L., Höök, F., Xu, H.X., Small 4, 1296 (2008).Google Scholar
Fang, Y.R., Wei, H., Hao, F., Nordlander, P., Xu, H.X., Nano Lett. 9, 2049 (2009).Google Scholar
Theiss, J., Pavaskar, P., Echternach, P.M., Muller, R.E., Cronin, S.B., Nano Lett. 10, 2749 (2010).Google Scholar
Hutchison, J.A., Centeno, S.P., Odaka, H., Fukumura, H., Hofkens, J., Uji-i, H., Nano Lett. 9, 995 (2009).Google Scholar
Tian, J.H., Liu, B., Li, X.L., Yang, Z.L., Ren, B., Wu, S.T., Tao, N.J., Tian, Z.Q., J. Am. Chem. Soc. 128, 14748 (2006).Google Scholar
Baik, J.M., Lee, S.J., Moskovits, M., Nano Lett. 9, 672 (2009).Google Scholar
Herzog, J.B., Knight, M.W., Li, Y.J., Evans, K.M., Halas, N.J., Natelson, D., Nano Lett. 13, 1359 (2013).Google Scholar