Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T00:58:34.337Z Has data issue: false hasContentIssue false

Nanocrystal solids: A modular approach to materials design

Published online by Cambridge University Press:  13 January 2012

Dmitri V. Talapin*
Affiliation:
Department of Chemistry at the University of Chicago; dvtalapin@uchicago.edu
Get access

Abstract

Colloidal nanocrystals can combine the benefits of inorganic semiconductors with size-tunable electronic structure and inexpensive solution-based device fabrication. Single- and multicomponent nanocrystal assemblies, also known as superlattices, provide a powerful general platform for designing two- and three-dimensional solids with tailored electronic, magnetic, and optical properties. Such assemblies built of “designer atoms” can be considered as a novel type of condensed matter, whose behavior depends both on the properties of individual building blocks and on the interactions between them. Efficient charge transport is crucial for applications of nanocrystal-based materials in various electronic and optoelectronic devices. For a long time, nanocrystals were considered poor electronic conductors. To facilitate charge transport, we developed novel surface chemistry using all-inorganic ligands, namely metal chalcogenide complexes that transformed colloidal nanomaterials into a very competitive class of solution-processed semiconductors for electronic, thermoelectric, and photovoltaic applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ropp, R.C., Solid State Chemistry (Elsevier Science, NY, 2003).Google Scholar
2.Corey, E.J., Cheng, X.-M., The Logic of Chemical Synthesis (Wiley-Interscience, NY, 1995).Google Scholar
3.Stroscio, M.A., Dutta, M., Advanced Semiconductor Heterostructures: Novel Devices, Potential Device Applications and Basic Properties (World Scientific, NJ, 2003).Google Scholar
4.Brus, L., J. Phys. Chem. 90, 2555 (1986).CrossRefGoogle Scholar
5.Klimov, V.I., Nanocrystal Quantum Dots, 2nd edition (CRC Press, NY, 2010).Google Scholar
6.Murray, C.B., Kagan, C.R., Bawendi, M.G., Annu. Rev. Mater. Sci. 30, 545 (2000).CrossRefGoogle Scholar
7.Yin, Y., Alivisatos, A.P., Nature 437, 664 (2005).CrossRefGoogle Scholar
8.Park, J., Joo, J., Kwon, C.G., Jang, Y., Hyeon, T.Angew. Chem. Int. Ed. 46, 4630 (2007).CrossRefGoogle Scholar
9.Cozzoli, P.D., Pellegrino, T., Manna, L., Chem. Soc. Rev. 35, 1195 (2006).CrossRefGoogle Scholar
10.Efros, A.L., Sov. Phys. Semicond. 16, 772 (1982).Google Scholar
11.Hu, J., Li, L.-S., Yang, W., Manna, L., Wang, L.-W., Alivisatos, A.P., Science 292, 2060 (2001).CrossRefGoogle Scholar
12.Talapin, D.V., Koeppe, R., Götzinger, S., Kornowski, A., Lupton, J.M., Rogach, A.L., Benson, O., Feldmann, J., Weller, H., Nano Lett. 3, 1677 (2003).CrossRefGoogle Scholar
13.Talapin, D.V., Nelson, J.H., Shevchenko, E.V., Aloni, S., Sadtler, B., Alivisatos, A.P., Nano Lett. 7, 2951 (2007).CrossRefGoogle Scholar
14.Mueller, J., Lupton, J.M., Lagoudakis, P.G., Schindler, F., Koeppe, R., Rogach, A.L., Feldmann, J., Talapin, D.V., Weller, H., Nano Lett. 5, 2044 (2005).CrossRefGoogle Scholar
15.Kraus, R.M., Lagoudakis, P.G., Rogach, A.L., Talapin, D.V., Weller, H., Lupton, J.M., Feldmann, J., Phys. Rev. Lett. 98, 017401 (2007).CrossRefGoogle Scholar
16.Borys, N.J., Walter, M.J., Huang, J., Talapin, D.V., Lupton, J.M., Science 330, 1371 (2010).CrossRefGoogle Scholar
17.Lee, J.-S., Bodnarchuk, M.I., Shevchenko, E.V., Talapin, D.V., J. Am. Chem. Soc. 132, 6382 (2010).CrossRefGoogle Scholar
18.Lee, J.S., Shevchenko, E.V., Talapin, D.V., J. Am. Chem. Soc. 130, 9673 (2008).CrossRefGoogle Scholar
19.Rogach, A.L., Talapin, D.V., Shevchenko, E.V., Kornowski, A., Haase, M., Weller, H., Adv. Funct. Mater. 12, 653 (2002).3.0.CO;2-V>CrossRefGoogle Scholar
20.Shevchenko, E.V., Talapin, D.V., Kotov, N.A., O’Brien, S., Murray, C.B., Nature 439, 55 (2006).CrossRefGoogle Scholar
21.Shevchenko, E.V., Talapin, D.V., Murray, C.B., O’Brien, S., J. Am. Chem. Soc. 128, 3620 (2006).CrossRefGoogle Scholar
22.Chen, J., Ye, X., Murray, C.B., ACS Nano 4, 2374 (2010).CrossRefGoogle Scholar
23.Friedrich, H., Gommes, C.J., Overgaag, K., Meeldijk, J.D., Evers, W.H., Nijs, B.D., Boneschanscher, M.P., de Jongh, P.E., Verkleij, A.J., de Jong, K.P., van Blaaderen, A., Vanmaekelbergh, D., Nano Lett. 9, 2719 (2009).CrossRefGoogle Scholar
24.Smith, D.K., Goodfellow, B., Smilgies, D.-M., Korgel, B.A., J. Am. Chem. Soc. 131, 3281 (2009).CrossRefGoogle Scholar
25.Eldridge, M.D., Madden, P.A., Frenkel, D., Nature 365, 35 (1993).CrossRefGoogle Scholar
26.Leunissen, M.E., Christova, C.G., Hynninen, A.-P., Royall, C.P., Campbell, A.I., Imhof, A., Dijkstra, M., van Roij, R., van Blaaderen, A., Nature 437, 235 (2005).CrossRefGoogle Scholar
27.Bodnarchuk, M.I., Kovalenko, M.V., Heiss, W., Talapin, D.V., J. Am. Chem. Soc. 132, 11967 (2010).CrossRefGoogle Scholar
28.Bodnarchuk, M.I., Li, L., Fok, A., Nachtergaele, S., Ismagilov, R.F., Talapin, D.V., J. Am. Chem. Soc. 133, 8956 (2011).CrossRefGoogle Scholar
29.Abe, E., Yan, Y.F., Pennycook, S.J., Nat. Mater. 3, 759 (2004).CrossRefGoogle Scholar
30.Talapin, D.V., Shevchenko, E.V., Bodnarchuk, M.I., Ye, X., Chen, J., Murray, C.B., Nature 461, 964 (2009).CrossRefGoogle Scholar
31.Talapin, D.V., Lee, J.-S., Kovalenko, M.V., Shevchenko, E.V., Chem. Rev. 110, 389 (2010).CrossRefGoogle Scholar
32.Vanmaekelbergh, D., Liljeroth, P., Chem. Soc. Rev. 34, 299 (2005).CrossRefGoogle Scholar
33.Yu, D., Wang, C., Guyot-Sionnest, P., Science 300, 1277 (2003).CrossRefGoogle Scholar
34.Leatherdale, C.A., Kagan, C.R., Morgan, N.Y., Empedocles, S.A., Kastner, M.A., Bawendi, M.G., Phys. Rev. B 62, 2669 (2000).CrossRefGoogle Scholar
35.Talapin, D.V., Murray, C.B., Science 310, 86 (2005).CrossRefGoogle Scholar
36.Norris, D.J., Efros, A.L., Erwin, S.C., Science 319, 1776 (2008).CrossRefGoogle Scholar
37.Anderson, P.W., Lee, P.A., Saitoh, M., Solid State Commun. 13, 595 (1973).CrossRefGoogle Scholar
38.Ethan, J.D.K., Harnik, S., Sean, H., Dean, D.M., Larissa, L., Edward, H.S., Appl. Phys. Lett. 92, 212105 (2008).Google Scholar
39.Liu, Y., Gibbs, M., Puthussery, J., Gaik, S., Ihly, R., Hillhouse, H.W., Law, M., Nano Lett. 10, 1960 (2010).CrossRefGoogle Scholar
40.Kovalenko, M.V., Scheele, M., Talapin, D.V., Science 324, 1417 (2009).CrossRefGoogle Scholar
41.Kovalenko, M.V., Bodnarchuk, M.I., Zaumseil, J., Lee, J.-S., Talapin, D.V., J. Am. Chem. Soc. 132, 10085 (2010).CrossRefGoogle Scholar
42.Lee, J.-S., Kovalenko, M.V., Huang, J., Chung, D.S., Talapin, D.V., Nat Nanotechnol. 6, 348 (2011).CrossRefGoogle Scholar
43.Nag, A., Kovalenko, M.V., Lee, J.-S., Liu, W., Spokoyny, B., Talapin, D.V., J. Am. Chem. Soc. 133, 10612 (2011).CrossRefGoogle Scholar
44.Fafarman, A.T., Koh, W.-K., Diroll, B.T., Kim, D.K., Ko, D.-K., Oh, S.J., Ye, X., Doan-Nguyen, V., Crump, M.R., Reifsnyder, D.C., Murray, C.B., Kagan, C.R., J. Am. Chem. Soc. (2011).Google Scholar
45.Kovalenko, M.V., Bodnarchuk, M.I., Talapin, D.V., J. Am. Chem. Soc. 132, 15124 (2010).CrossRefGoogle Scholar
46.Mitzi, D.B., Kosbar, L.L., Murray, C.E., Copel, M., Afzali, A., Nature 428, 299 (2004).CrossRefGoogle Scholar
47.Mitzi, D.B., Copel, M., Chey, S.J., Adv. Mater. 17, 1285 (2005).CrossRefGoogle Scholar
48.Kovalenko, M.V., Spokoyny, B., Lee, J.-S., Scheele, M., Weber, A., Perera, S., Landry, D., Talapin, D.V., J. Am. Chem. Soc. 132, 6686 (2010).CrossRefGoogle Scholar
49.Urban, J.J., Talapin, D.V., Shevchenko, E.V., Kagan, C.R., Murray, C.B., Nat. Mater. 6, 115 (2007).CrossRefGoogle Scholar