Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T17:38:10.032Z Has data issue: false hasContentIssue false

Nanocarbon-reinforced metal-matrix composites for structural applications

Published online by Cambridge University Press:  10 January 2019

Qiang Guo
Affiliation:
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, China; guoq@sjtu.edu.cn
Katsuyoshi Kondoh
Affiliation:
Department of International Affairs, Osaka University, Japan; kondoh@jwri.osaka-u.ac.jp
Seung Min Han
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Republic of Korea; smhan01@kaist.ac.kr
Get access

Abstract

Nanocarbon materials, such as carbon nanotubes, graphene, and their derivatives, are regarded as promising reinforcing agents in metal matrix composites (MMCs) because of their excellent intrinsic mechanical properties. Considering the various types of nanocarbons with different defect states and intrinsic properties, there is a potential for tailoring the mechanical behavior of nanocarbon-reinforced MMCs. This article reviews recent developments in both the processing and the structure–property correlations of these composites. Particular emphasis is given to the structure and properties of the nanocarbon–metal interfaces, as the external mechanical load is transferred between the nanocarbon and the metal matrix across their interfaces. Moreover, in addition to the intuitive load-bearing effect of the nanocarbon reinforcements, a copious interplay between nanocarbons and dislocations in the metal matrix has been found, which alters the deformation behavior that leads to additional strengthening. For structural applications, scalable fabrication routes for the nanocarbon-metal composites need to be developed, and studies on the mechanical behavior under real service conditions are needed.

Type
Mechanical Behavior of Nanocomposites
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tjong, S.C., Mater. Sci. Eng. Rep. 74, 281 (2013).CrossRefGoogle Scholar
Nieto, A., Bisht, A., Lahiri, D., Zhang, C., Agarwal, A., Int. Mater. Rev. 62, 241 (2017).CrossRefGoogle Scholar
Baig, Z., Mamat, O., Mustapha, M., Crit. Rev. Solid State Mater. Sci. 43, 1 (2018).CrossRefGoogle Scholar
Lee, C., Wei, X.D., Kysar, J.W., Hone, J., Science 321, 385 (2008).CrossRefGoogle Scholar
Li, Z., Guo, Q., Li, Z.Q., Fan, G.L., Xiong, D.-B., Su, Y.S., Zhang, J., Zhang, D., Nano Lett . 15, 8077 (2015).CrossRefGoogle Scholar
Kim, Y., Lee, J., Yeom, M.S., Shin, J.W., Kim, H., Cui, Y., Kysar, J.W., Hone, J., Jung, Y., Jeon, S., Han, S.M., Nat. Commun. 4, 2114 (2013).CrossRefGoogle Scholar
Zhao, L., Guo, Q., Li, Z., Li, Z.Q., Fan, G.L., Xiong, D.-B., Su, Y.S., Zhang, J., Tan, Z.Q., Zhang, D., Inter. J. Plast. 105, 128 (2018).CrossRefGoogle Scholar
Chen, B., Shen, J., Ye, X., Jia, L., Li, S., Umeda, J., Takahashi, M., Kondoh, K., Acta Mater . 140, 317 (2017).CrossRefGoogle Scholar
Liang, J.J., Huang, Y., Zhang, L., Wang, Y., Ma, Y.F., Guo, T.Y., Chen, Y.S., Adv. Funct. Mater. 19, 2297 (2009).CrossRefGoogle Scholar
Suryanarayana, C., Prog. Mater. Sci. 46, 1 (2001).CrossRefGoogle Scholar
Zhang, D.L., Prog. Mater. Sci. 49, 537 (2004).CrossRefGoogle Scholar
Witkin, D.B., Lavernia, E.J., Prog. Mater. Sci. 51, 1 (2006).CrossRefGoogle Scholar
Li, Z., Fan, G.L., Guo, Q., Li, Z.Q., Su, Y.S., Zhang, D., Carbon 95, 419 (2015).CrossRefGoogle Scholar
Hwang, J., Yoon, T., Jin, S.H., Lee, J., Kim, T.-S., Hong, S.H., Jeon, S., Adv. Mater. 25, 6724 (2013).CrossRefGoogle Scholar
Chen, B., Li, S., Jia, L., Umeda, J., Takahashi, M., Kondoh, K., Mater. Des. 72, 1 (2015).CrossRefGoogle Scholar
Kondoh, K., Threrujirapapong, T., Imai, H., Umeda, J., Fugetsu, B., Compos. Sci. Technol. 69, 1077 (2009).CrossRefGoogle Scholar
Kang, T.J., Yoon, J.W., Kim, D.I., Kum, S.S., Huh, Y.H., Hahn, J.H., Moon, S.H., Lee, H.Y., Kim, Y.H., Adv. Mater. 19, 427 (2007).CrossRefGoogle Scholar
Pavithra, C.L.P., Sarada, B.V., Rajulapati, K.V., Rao, T.N., Sundararajan, G., Sci. Rep. 4, 4049 (2014).CrossRefGoogle Scholar
Jackson, A.P., Vincent, J.F.V., Turner, R.M., Proc. R. Soc. Lond. B 234, 415 (1988).Google Scholar
Greer, J.R., Oliver, W.C., Nix, W.D., Acta Mater. 53, 1821 (2005).CrossRefGoogle Scholar
Greer, J.R., De Hosson, J.T.M., Prog. Mater. Sci. 56, 654 (2011).CrossRefGoogle Scholar
Feng, S., Guo, Q., Li, Z., Fan, G.L., Li, Z.Q., Xiong, D.-B., Su, Y.S., Tan, Z.Q., Zhang, J., Zhang, D., Acta Mater . 125, 98 (2017).CrossRefGoogle Scholar
Cao, M., Xiong, D.-B., Tan, Z.Q., Ji, G., Amin-Ahmadi, B., Guo, Q., Fan, G.L., Guo, C.P., Li, Z.Q., Zhang, D., Carbon 117, 65 (2017).CrossRefGoogle Scholar
Li, Z., Zhao, L., Guo, Q., Li, Z.Q., Fan, G.L., Guo, C.P., Zhang, D., Scr. Mater . 131, 67 (2017).CrossRefGoogle Scholar
Hwang, B., Kim, W., Kim, J., Lee, S., Lim, S., Kim, S., Oh, S.H., Ryu, S., Han, S.M., Nano Lett . 17, 4740 (2017).CrossRefGoogle Scholar
Kim, Y., Baek, J., Kim, S., Kim, S., Ryu, S., Jeon, S., Han, S.M., Sci. Rep. 6, 24785 (2016).CrossRefGoogle Scholar
da Costa Teixeira, J., Cram, D.G., Bourgeois, L., Bastow, T.J., Hill, A.J., Hutchinson, C.R., Acta Mater . 56, 6109 (2008).CrossRefGoogle Scholar
So, K.P., Chen, D., Kushima, A., Li, M.D., Kim, S., Yang, Y., Wang, Z.Q., Park, J.G., Lee, Y.H., Gonzalez, R.I., Kiwi, M., Bringa, E.M., Shao, L., Li, J., Nano Energy 22, 319 (2016).CrossRefGoogle Scholar