Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T05:10:51.307Z Has data issue: false hasContentIssue false

Movie-mode dynamic electron microscopy

Published online by Cambridge University Press:  13 January 2015

Thomas LaGrange
Affiliation:
Integrated Dynamic Electron Solutions, CA, USA; lagrange@phaseplate.com.
Bryan W. Reed
Affiliation:
Integrated Dynamic Electron Solutions, CA, USA; bryan@phaseplate.com
Daniel J. Masiel
Affiliation:
Integrated Dynamic Electron Solutions, CA, USA; dan@phaseplate.com
Get access

Abstract

The need to understand fast, complex physical phenomena through direct in situ observation has spurred the development of high-time-resolution transmission electron microscopy (TEM). Two complementary approaches have emerged: the single-shot and stroboscopic techniques. Single-shot TEM has advanced through the development of dynamic transmission electron microscopy (DTEM) and, more recently, by the advent of movie-mode DTEM, which enables high-frame-rate in situ TEM experimentation by capturing nanosecond-scale sequences of images or diffraction patterns. Previous DTEM studies produced only single snapshots of fast material processes. Movie-mode DTEM provides the ability to track the creation, motion, and interaction of individual defects, phase fronts, and chemical reaction fronts, providing invaluable information on the chemical, microstructural, and atomic-level features that govern rapid material processes. This article discusses movie-mode DTEM technology, its application in the study of reaction dynamics in Ti–B-based reactive nanolaminates, and future instrumentation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Porter, D.A., Easterling, K.E., Phase Transformations in Metals and Alloys, (Nelson Thrones Ltd., Delta Place, UK, 2nd ed. 1992).CrossRefGoogle Scholar
Spivak, G.V., Pavlyuchenko, O.P., Petrov, V.I., Bull. Acad. Sci. USSR Phys. Ser. 30, 822 (1966).Google Scholar
Bostanjoglo, O., Adv. Imaging Electron Phys. 121, 1 (2002).CrossRefGoogle Scholar
Bostanjoglo, O., Elschner, R., Mao, Z., Nink, T., Weingartner, M., Ultramicroscopy 81, 141 (2000).CrossRefGoogle Scholar
Bostanjoglo, O., Tornow, R.P., Tornow, W., J. Phys. E: Sci. Instrum. 20, 556 (1987).CrossRefGoogle Scholar
Domer, H., Bostanjoglo, O., Rev. Sci. Instrum. 74, 4369 (2003).CrossRefGoogle Scholar
Barwick, B., Park, H.S., Kwon, O.H., Baskin, J.S., Zewail, A.H., Science 322, 1227 (2008).CrossRefGoogle Scholar
Zewail, A.H., Philos. Trans. R. Soc. Lond. A 363, 315 (2005).Google Scholar
Zewail, A.H., Science 328, 187 (2010).CrossRefGoogle Scholar
Armstrong, M.R., Boyden, K., Browning, N.D., Campbell, G.H., Colvin, J.D., DeHope, W.J., Frank, A.M., Gibson, D.J., Hartemann, F., Kim, J.S., King, W.E., LaGrange, T.B., Pyke, B.J., Reed, B.W., Shuttlesworth, R.M., Stuart, B.C., Torralva, B.R., Ultramicroscopy 107, 356 (2007).CrossRefGoogle Scholar
Armstrong, M.R., Reed, B.W., Torralva, B.R., Browning, N.D., Appl. Phys. Lett. 90, 114101 (2007).CrossRefGoogle Scholar
LaGrange, T., Armstrong, M.R., Boyden, K., Brown, C.G., Campbell, G.H., Colvin, J.D., DeHope, W.J., Frank, A.M., Gibson, D.J., Hartemann, F.V., Kim, J.S., King, W.E., Pyke, B.J., Reed, B.W., Shirk, M.D., Shuttlesworth, R.M., Stuart, B.C., Torralva, B.R., Browning, N.D., Appl. Phys. Lett. 89, 044105 (2006).CrossRefGoogle Scholar
LaGrange, T., Campbell, G.H., Reed, B., Taheri, M., Pesavento, J.B., Kim, J.S., Browning, N.D., Ultramicroscopy 108, 1441 (2008).CrossRefGoogle Scholar
LaGrange, T., Reed, B.W., Santala, M.K., McKeown, J.T., Kulovits, A., Wiezorek, J.M., Nikolova, L., Rosei, F., Siwick, B.J., Campbell, G.H., Micron 43, 1108 (2012).CrossRefGoogle Scholar
Reed, B.W., Armstrong, M.R., Browning, N.D., Campbell, G.H., Evans, J.E., LaGrange, T., Masiel, D.J., Microsc. Microanal. 15, 272 (2009).CrossRefGoogle Scholar
Campbell, G.H., LaGrange, T., Kim, J.S., Reed, B.W., Browning, N.D., J. Electron Microsc. 59, S67 (2010).CrossRefGoogle Scholar
Kim, J.S., LaGrange, T., Reed, B.W., Knepper, R., Weihs, T.P., Browning, N.D., Campbell, G.H., Acta Mater. 59, 3571 (2011).CrossRefGoogle Scholar
Kim, J.S., LaGrange, T., Reed, B.W., Taheri, M.L., Armstrong, M.R., King, W.E., Browning, N.D., Campbell, G.H., Science 321, 1472 (2008).CrossRefGoogle Scholar
LaGrange, T., Campbell, G.H., Turchi, P.E.A., King, W.E., Acta Mater. 55, 5211 (2007).CrossRefGoogle Scholar
LaGrange, T., Grummon, D.S., Reed, B.W., Browning, N.D., King, W.E., Campbell, G.H., Appl. Phys. Lett. 94, 184101 (2009).CrossRefGoogle Scholar
McKeown, J.T., Kulovits, A.K., Liu, C., Zweiacker, Kai, Reed, B.W., LaGrange, T., Wiezorek, J.M.K., Campbell, G.H., Acta Mater. 65, 56 (2014).CrossRefGoogle Scholar
Nikolova, L., LaGrange, T., Reed, B.W., Stern, M.J., Browning, N.D., Campbell, G.H., Kieffer, J.C., Siwick, B.J., Rosei, F., Appl. Phys. Lett. 97, 3 (2010).CrossRefGoogle Scholar
Taheri, M.L., LaGrange, T., Reed, B.W., Armstrong, M.R., Campbell, G.H., DeHope, W.J., Kim, J.S., King, W.E., Masiel, D.J., Browning, N.D., Microsc. Res. Tech. 72, 122 (2009).CrossRefGoogle Scholar
Lobastov, V.A., Srinivasan, R., Zewail, A.H., Proc. Natl. Acad. Sci. U.S.A. 102, 7069 (2005).CrossRefGoogle Scholar
Barwick, B., Flannigan, D.J., Zewail, A.H., Nature 462, 902 (2009).CrossRefGoogle Scholar
Carbone, F., Barwick, B., Kwon, O.H., Park, H.S., Baskin, J.S., Zewail, A.H., Chem. Phys. Lett. 468, 107 (2009).CrossRefGoogle Scholar
Carbone, F., Kwon, O.H., Zewail, A.H., Science 325, 181 (2009).CrossRefGoogle Scholar
Flannigan, D.J., Barwick, B., Zewail, A.H., Proc. Natl. Acad. Sci. U.S.A. 107, 9933 (2010).CrossRefGoogle Scholar
Flannigan, D.J., Samartzis, P.C., Yurtsever, A., Zewail, A.H., Nano Lett. 9, 875 (2009).CrossRefGoogle Scholar
Kwon, O.H., Barwick, B., Park, H.S., Baskin, J.S., Zewail, A.H., Nano Lett. 8, 3557 (2008).CrossRefGoogle Scholar
Kwon, O.H., Barwick, B., Park, H.S., Baskin, J.S., Zewail, A.H., Proc. Natl. Acad. Sci. U.S.A. 105, 8519 (2008).CrossRefGoogle Scholar
Reed, B.W., LaGrange, T., Shuttlesworth, R.M., Gibson, D.J., Campbell, G.H., Browning, N.D., Rev. Sci. Instrum. 81, 053706 (2010).CrossRefGoogle Scholar
Krüger, M., Schenk, M., Hommelhoff, P., Nature 475, 78 (2011).CrossRefGoogle Scholar
King, W.E., Campbell, G.H., Frank, A., Reed, B., Schmerge, J.F., Siwick, B.J., Stuart, B.C., Weber, P.M., J. Appl. Phys. 97, 111101 (2005).CrossRefGoogle Scholar
Bostanjoglo, O., Rosin, T., Mikroskopie 32, 190 (1976).Google Scholar
Bostanjoglo, O., Rosin, T., Proc. 7th Eur. Congr. Electron Microscopy, Brederoo, P., Boom, G., Eds. (Seventh European Congress on Electron Microscopy Foundation, The Hague, The Netherlands, 1980), p. 88.Google Scholar
Takaoka, A., Ura, K., J. Electron Microsc. 37, 117 (1988).Google Scholar
Santala, M.K., Reed, B.W., Raoux, S., Topuria, T., LaGrange, T., Campbell, G.H., Appl. Phys. Lett. 102, 174105 (2013).CrossRefGoogle Scholar
LaGrange, T., Reed, B.W., McKeown, J.T., Santala, M.J., Dehope, W.J., Huete, G., Shuttlesworth, R.M., Campbell, G.H., Microsc. Microanal. 19, 1154 (2013).CrossRefGoogle Scholar
Li, H.P., Acta Mater. 51, 3213 (2003).CrossRefGoogle Scholar
Avrami, M., J. Chem. Phys. 7, 1103 (1939).CrossRefGoogle Scholar
Johnson, W.A., Mehl, R.F., Trans. Am. Inst. Min. Metall. Eng. 135, 416 (1939).Google Scholar
Azatyan, T.S., Maltsev, V.M., Merzhanov, A.G., Seleznev, V.A., Combust. Explos. Shock Waves 16, 163 (1980).CrossRefGoogle Scholar
Holt, J.B., Kingman, D.D., Bianchini, G.M., Mater. Sci. Eng. 71, 321 (1985).CrossRefGoogle Scholar
Claessens, B.J., van der Geer, S.B., Taban, G., Vredenbregt, E.J.D., Luiten, O.J., Phys. Rev. Lett. 95, 164801 (2005).CrossRefGoogle Scholar
McCulloch, A.J., Sheludko, D.V., Saliba, S.D., Bell, S.C., Junker, M., Nugent, K.A., Scholten, R.E., Nat. Phys. 7, 785 (2011).CrossRefGoogle Scholar