Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T04:09:21.892Z Has data issue: false hasContentIssue false

Morphological considerations of organic electronic films for flexible and stretchable devices

Published online by Cambridge University Press:  02 February 2017

Brendan T. O’Connor
Affiliation:
Department of Mechanical and Aerospace Engineering, North Carolina State University, USA; btoconno@ncsu.edu
Omar M. Awartani
Affiliation:
Department of Physics, North Carolina State University, USA; omawarta@ncsu.edu
Nrup Balar
Affiliation:
Department of Mechanical and Aerospace Engineering, North Carolina State University, USA; nlbalar@ncsu.edu
Get access

Abstract

In the development of high-performance organic electronics, there has been significant effort in establishing relationships between microstructure and electronic properties, which has provided a deeper understanding of device operation and has guided performance improvements. When considering flexible and stretchable organic electronics, the mechanical behavior of the active layers becomes a critical attribute alongside electronic functionality. Thus, there is a need to establish the role of film morphology on both electronic properties and thermomechanical behavior, and the relationship between mechanical and electronic properties. In this article, we highlight recent advances in establishing these important relationships and the approaches employed to manage film morphology to optimize both mechanical behavior and device performance. Additionally, in stretchable applications, the film morphology may not be static, and capturing the microstructure changes under deformation is necessary to establish structure–property relationships over the expected physical operating space. Thus, also discuss film morphology change under large deformation for various stretchable film approaches.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauer, S., Bauer-Gogonea, S., Graz, I., Kaltenbrunner, M., Keplinger, C., Schwodiauer, R., Adv. Mater. 26, 149 (2014).Google Scholar
Choi, S., Lee, H., Ghaffari, R., Hyeon, T., Kim, D.H., Adv. Mater. 28, 4203 (2016).Google Scholar
Kim, D.H., Xiao, J.L., Song, J.Z., Huang, Y.G., Rogers, J.A., Adv. Mater. 22, 2108 (2010).CrossRefGoogle Scholar
O’Connor, T.F., Zaretski, A.V., Shiravi, B.A., Savagatrup, S., Printz, A.D., Diaz, M.I., Lipomi, D.J., Energy Environ. Sci. 7, 370 (2014).Google Scholar
Qian, Y., Zhan, X., Xie, L.H., Qi, D., Chandran, B.K., Chen, X., Huang, W., Adv. Mater. 28, 9243 (2016).Google Scholar
DeLongchamp, D.M., Kline, R.J., Fischer, D.A., Richter, L.J., Toney, M.F., Adv. Mater. 23, 319 (2011).Google Scholar
Venkateshvaran, D., Nikolka, M., Sadhanala, A., Lemaur, V., Zelazny, M., Kepa, M., Hurhangee, M., Kronemeijer, A.J., Pecunia, V., Nasrallah, I., Romanov, I., Broch, K., McCulloch, I., Emin, D., Olivier, Y., Cornil, J., Beljonne, D., Sirringhaus, H., Nature 515, 384 (2014).Google Scholar
Lipomi, D.J., Adv. Mater. 28, 4180 (2016).Google Scholar
Savagatrup, S., Printz, A.D., O’Connor, T.F., Zaretski, A.V., Rodriquez, D., Sawyer, E.J., Rajan, K.M., Acosta, R.I., Root, S.E., Lipomi, D.J., Energy Environ. Sci. 8, 55 (2015).Google Scholar
Bruner, C., Dauskardt, R., Macromolecules 47, 1117 (2014).Google Scholar
Yi, H., Payne, M.M., Anthony, J.E., Podzorov, V., Nat. Comm. 3, 1259 (2012).Google Scholar
Rodriquez, D., Savagatrup, S., Valle, E., Proctor, C.M., McDowell, C., Bazan, G.C., Nguyen, T.Q., Lipomi, D.J., ACS Appl. Mater. Interfaces 8, 11649 (2016).Google Scholar
Virkar, A.A., Mannsfeld, S., Bao, Z.A., Stingelin, N., Adv. Mater. 22, 3857 (2010).Google Scholar
Vezie, M.S., Few, S., Meager, I., Pieridou, G., Dorling, B., Ashraf, R.S., Goni, A.R., Bronstein, H., McCulloch, I., Hayes, S.C., Campoy-Quiles, M., Nelson, J., Nat. Mater. 15, 746 (2016).Google Scholar
Tummala, N.R., Risko, C., Bruner, C., Dauskardt, R.H., Bredas, J.L., J. Polym. Sci. B Polym. Phys. 53, 934 (2015).Google Scholar
Liang, Y.Y., Xu, Z., Xia, J.B., Tsai, S.T., Wu, Y., Li, G., Ray, C., Yu, L.P., Adv. Mater. 22, E135 (2010).Google Scholar
Sirringhaus, H., Adv. Mater. 26, 1319 (2014).Google Scholar
Roth, B., Savagatrup, S., de los Santos, N.V., Hagemann, O., Carle, J.E., Helgesen, M., Livi, F., Bundgaard, E., Sondergaard, R.R., Krebs, F.C., Lipomi, D.J., Chem. Mater. 28, 2363 (2016).Google Scholar
O’Connor, B., Chan, E.P., Chan, C., Conrad, B.R., Richter, L.J., Kline, R.J., Heeney, M., McCulloch, I., Soles, C.L., DeLongchamp, D.M., ACS Nano 4, 7538 (2010).Google Scholar
Savagatrup, S., Makaram, A.S., Burke, D.J., Lipomi, D.J., Adv. Funct. Mater. 24, 1169 (2014).Google Scholar
Savagatrup, S., Printz, A.D., Wu, H.S., Rajan, K.M., Sawyer, E.J., Zaretski, A.V., Bettinger, C.J., Lipomi, D.J., Synth. Met. 203, 208 (2015).Google Scholar
Savagatrup, S., Printz, A.D., Rodriquez, D., Lipomi, D.J., Macromolecules 47, 1981 (2014).CrossRefGoogle Scholar
Printz, A.D., Savagatrup, S., Burke, D.J., Purdy, T.N., Lipomi, D.J., RSC Adv. 4, 13635 (2014).Google Scholar
Kim, J.S., Kim, J.H., Lee, W., Yu, H., Kim, H.J., Song, I., Shin, M., Oh, J.H., Jeong, U., Kim, T.S., Kim, B.J., Macromolecules 48, 4339 (2015).Google Scholar
Smith, Z.C., Wright, Z.M., Arnold, A.M., Sauvé, G., McCullough, R.D., Sydlik, S.A., Adv. Electron. Mater. (2017), doi:10.1002/aelm.201600316.Google Scholar
Wang, G.N., Shaw, L., Xu, J., Kurosawa, T., Schroeder, B.C., Oh, J.Y., Benight, S.J., Bao, Z., Adv. Funct. Mater. 26, 7254 (2016).Google Scholar
Oh, J.Y., Rondeau-Gagné, S., Chiu, Y., Chortos, A., Lissel, F., Wang, G.N., Schroeder, B.C., Kurosawa, T., Lopez, J., Katsumata, T., Xu, J., Zhu, C., Gu, X., Bae, W., Kim, Y., Jin, L., Chung, J.W., Tok, J.B.-H., Bao, Z., Nature 539, 411 (2016).Google Scholar
Stafford, C.M., Vogt, B.D., Harrison, C., Julthongpiput, D., Huang, R., Macromolecules 39, 5095 (2006).Google Scholar
Printz, A.D., Zaretski, A.V., Savagatrup, S., Chiang, A.S.C., Lipomi, D.J., ACS Appl. Mater. Interfaces 7, 23257 (2015).Google Scholar
Lipomi, D.J., Lee, J.A., Vosgueritchian, M., Tee, B.C.K., Bolander, J.A., Bao, Z.A., Chem. Mater. 24, 373 (2012).Google Scholar
Vosgueritchian, M., Lipomi, D.J., Bao, Z.A., Adv. Funct. Mater. 22, 421 (2012).Google Scholar
Savagatrup, S., Chan, E., Renteria-Garcia, S.M., Printz, A.D., Zaretski, A.V., O’Connor, T.F., Rodriquez, D., Valle, E., Lipomi, D.J., Adv. Funct. Mater. 25, 427 (2015).Google Scholar
Oh, J.Y., Kim, S., Baik, H.K., Jeong, U., Adv. Mater. 28, 4455 (2016).Google Scholar
Awartani, O., Lemanski, B.I., Ro, H.W., Richter, L.J., DeLongchamp, D.M., O’Connor, B.T., Adv. Energy Mater. 3, 399 (2013).Google Scholar
Dupont, S.R., Oliver, M., Krebs, F.C., Dauskardt, R.H., Sol. Energy Mater. Sol. Cells 97, 171 (2012).Google Scholar
Lipomi, D.J., Chong, H., Vosgueritchian, M., Mei, J.G., Bao, Z.A., Sol. Energy Mater. Sol. Cells 107, 355 (2012).Google Scholar
Tummala, N.R., Bruner, C., Risko, C., Brédas, J.-L., Dauskardt, R.H., ACS Appl. Mater. Interfaces 7, 9957 (2015).Google Scholar
Kim, T., Kim, J.H., Kang, T.E., Lee, C., Kang, H., Shin, M., Wang, C., Ma, B.W., Jeong, U., Kim, T.S., Kim, B.J., Nat. Commun. 6, 8546 (2015).Google Scholar
Moulton, J., Smith, P., J. Polym. Sci. B Polym. Phys. 30, 871 (1992).Google Scholar
Muller, C., Goffri, S., Breiby, D.W., Andreasen, J.W., Chanzy, H.D., Janssen, R.A.J., Nielsen, M.M., Radano, C.P., Sirringhaus, H., Smith, P., Stingelin-Stutzmann, N., Adv. Funct. Mater. 17, 2674 (2007).Google Scholar
Scott, J.I., Xue, X., Wang, M., Kline, R.J., Hoffman, B., Dougherty, D., Zhou, C., Bazan, G.C., O’Connor, B.T., ACS Appl. Mater. Interfaces 8, 14037 (2016).Google Scholar
Shin, M., Oh, J.Y., Byun, K.E., Lee, Y.J., Kim, B., Baik, H.K., Park, J.J., Jeong, U., Adv. Mater. 27, 1255 (2015).Google Scholar
Choi, D., Kim, H., Persson, N., Chu, P.H., Chang, M., Kang, J.H., Graham, S., Reichmanis, E., Chem. Mater. 28, 1196 (2016).Google Scholar
Song, E., Kang, B., Choi, H.H., Sin, D.H., Lee, H., Lee, W.H., Cho, K., Adv. Electron. Mater. 2, 1500250 (2016).Google Scholar
Sun, T., Scott, J.I., Wang, M., Kline, R.J., Bazan, G.C., O’Connor, B.T., Adv. Electron. Mater. (2017), doi:10.1002/aelm.201600388.Google Scholar
Peng, R., Pang, B., Hu, D.Q., Chen, M.J., Zhang, G.B., Wang, X.H., Lu, H.B., Cho, K., Qiu, L.Z., J. Mater. Chem. C 3, 3599 (2015).Google Scholar
Savagatrup, S., Printz, A.D., O’Connor, T.F., Zaretski, A.V., Lipomi, D.J., Chem. Mater. 26, 3028 (2014).Google Scholar
Wu, H.C., Benight, S.J., Chortos, A., Lee, W.Y., Mei, J.G., To, J.W.F., Lu, C.E., He, M.Q., Tok, J.B.H., Chen, W.C., Bao, Z.N., Chem. Mater. 26, 4544 (2014).Google Scholar
Chortos, A., Lim, J., To, J.W.F., Vosgueritchian, M., Dusseault, T.J., Kim, T.H., Hwang, S., Bao, Z.A., Adv. Mater. 26, 4253 (2014).Google Scholar
O’Connor, B., Kline, R.J., Conrad, B.R., Richter, L.J., Gundlach, D., Toney, M.F., DeLongchamp, D.M., Adv. Funct. Mater. 21, 3697 (2011).Google Scholar
Gargi, D., Kline, R.J., DeLongchamp, D.M., Fischer, D.A., Toney, M.F., O’Connor, B.T., J. Phys. Chem. C 117, 17421 (2013).Google Scholar
Yang, C.Y., Lee, K., Heeger, A.J., J. Mol. Struct. 521, 315 (2000).Google Scholar
O’Connor, B.T., Reid, O.G., Zhang, X.R., Kline, R.J., Richter, L.J., Gundlach, D.J., DeLongchamp, D.M., Toney, M.F., Kopidakis, N., Rumbles, G., Adv. Funct. Mater. 24, 3422 (2014).Google Scholar
Awartani, O.M., Zhao, B.X., Currie, T., Kline, R.J., Zikry, M.A., O’Connor, B.T., Macromolecules 49, 327 (2016).Google Scholar
Xue, X., Chandler, G., Zhang, X.R., Kline, R.J., Fei, Z.P., Heeney, M., Diemer, P.J., Jurchescu, O.D., O’Connor, B.T., ACS Appl. Mater. Interfaces 7, 26726 (2015).Google Scholar
Zhao, B.X., Awartani, O., O’Connor, B., Zikry, M.A., J. Polym. Sci. B Polym. Phys. 54, 896 (2016).Google Scholar
Root, S.E., Savagatrup, S., Pais, C.J., Arya, G., Lipomi, D.J., Macromolecules 49, 2886 (2016).Google Scholar