Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T14:41:39.088Z Has data issue: false hasContentIssue false

MOCVD-Based YBCO-Coated Conductors

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Metalorganic chemical vapor deposition (MOCVD) is a well-developed deposition process that shows great promise for scaling up the production of high-temperature superconductors (HTSs) to quickly fabricate useful lengths of superconducting tapes and wires.The primary advantage of MOCVD is its potential for high tape throughput, a key factor in determining the cost of second-generation HTS tapes.This article details progress in long-length HTS tape fabrication, high-throughput processing, and techniques to improve critical current levels in high magnetic fields.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Chou, P.Zhong, Q.Li, Q.L.Abazajian, K.Ignatiev, A.Wang, C.Y.Deal, E.E. and Chen, J.G.Physica C 254 (1995) p.93.CrossRefGoogle Scholar
2Yamane, H.Masumoto, H.Hirai, T.Iwasaki, H.Watanabe, K.Kobayashi, N.Muto, Y. and Kurosawa, H.Appl. Phys. Lett. 53 (1988) p.1548.CrossRefGoogle Scholar
3Becht, M.Appl. Supercond. 4 (1996) p.465.CrossRefGoogle Scholar
4Richards, B.C.Cook, S.L.Pinch, D.L.Andrews, G.W.Lengeling, G.Schulte, B., Jürgensen, H., Shen, Y.Q.Vase, P.Freltoft, T.Spee, A.Linden, J.L.Hitchman, M.L.Shamlian, S.H. and Brown, A.Physica C 252 (1995) p.229.CrossRefGoogle Scholar
5Nagai, H.Yoshida, Y.Ito, Y.Taniguchi, S.Hirabayashi, I.Matsunami, N. and Takai, Y.Supercond. Sci. Technol. 10 (1997) p.213.CrossRefGoogle Scholar
6Burtman, V.Schieber, M.Brodsky, I.Hermon, H. and Yaroslavsky, Y.J. Cryst. Growth 166 (1996) p.832.CrossRefGoogle Scholar
7Busch, H.Fink, A.Müller, A., and Samwer, K.Supercond. Sci. Technol. 6 (1993) p.42.CrossRefGoogle Scholar
8Yoshida, Y.Ito, Y.Hirabayashi, I.Nagai, H. and Takai, Y.Appl. Phys. Lett. 69 (1996) p.845.CrossRefGoogle Scholar
9Selvamanickam, V.Carota, G.Funk, M.Vo, N.Haldar, P.Balachandran, U.Chudzik, M.Arendt, P.Groves, J.R.DePaula, R. and Newnam, B.IEEE Trans. Appl. Supercond. 11 (2001) p.3379.CrossRefGoogle Scholar
10Onabe, K.Akata, H.Higashiyama, K.Nagaya, S. and Saitoh, T.IEEE Trans. Appl. Supercond. 11 (2001) p.3150.CrossRefGoogle Scholar
11Stadel, O.Schmidt, J., Wahl, G.Jimenez, C.Weiss, F.Krellmann, M.Selbmann, D.Markov, N.V.Samoylenkov, S.V.Gorbenko, O.Yu. and Kaul, A.R.Physica C 341–348 (2000) p.2477.CrossRefGoogle Scholar
12Zhang, J.Gardiner, R.A.Kirlin, P.S.Boerstler, R.W. and Steinbeck, J.Appl. Phys. Lett. 61 (1992) p.2884.CrossRefGoogle Scholar
13Stadel, O. J.Schmidt, Liekefett, M.Wahl, G.Gorbenko, O. and Kaul, A.R.IEEE Trans. Appl. Supercond. 13 (2003) p.2528.CrossRefGoogle Scholar
14Selvamanickam, V.Lee, H.G.Li, Y.Xiong, X.Qiao, Y. J.Reeves, Xie, Y.Knoll, A. and Lenseth, K.Physica C 392–396 (2003) p.859.CrossRefGoogle Scholar
15Selvamanickam, V.Galinski, G.B.Carota, G.DeFrank, J.Trautwein, C.Haldar, P.Balachandran, U.Chudzik, M.Coulter, J.Y. and Arendt, P.N.Physica C 333 (2000) p.155.CrossRefGoogle Scholar
16Selvamanickam, V.Lee, H.G.Xiong, X.Qiao, Y.Xie, Y.Reeves, J.Li, Y.Knoll, A. and Lenseth, K. (Mat. Res. Soc. Symp. Proc. EXS-3, Warrendale, PA, 2004) p.29.Google Scholar
17Selvamanickam, V.Lee, H.G.Xiong, X.Qiao, Y.Xie, Y.Reeves, J.Knoll, A.Li, Y.Lenseth, K. and Schmidt, R.Proc. Electrochem. Soc. Ann. Mtg. (Electrochemical Society Inc., Pennington, NJ, 2004) in press.Google Scholar
18Ito, Y.Yoshida, Y.Mizushima, Y.Hirabayashi, I.Nagai, H. and Takai, Y.Jpn. J.Appl. Phys., Part 2 35 (1996) p.L825.CrossRefGoogle Scholar
19Selvamanickam, V.Lee, H.G.Xie, Y.Xiong, X.Qiao, Y.Li, Y.Reeves, J. and Knoll, A. Proc. Int. Workshop on Coated Conductors for Applications (2004)in press.Google Scholar
20Xie, Y. in Proc. Air Force Office of Sci. Res. MURI Coated Cond. Rev. [CD-ROM] (University of Wisconsin-Madison, 2004).Google Scholar
21Civale, L.Maiorov, B.Serquis, A.Willis, J.O.Coulter, J.Y.Wang, H.Jia, Q.X.Arendt, P.N.MacManus-Driscoll, J.L., Maley, M.P. and Foltyn, S.R.Appl. Phys. Lett. 84 (2004) p.2121.CrossRefGoogle Scholar
22Dam, B.Huijibregtse, J.M.Klaassen, F.C.Geest, R.C.F. van der, Doornbos, G.Rector, J.H.Testa, A.M.Freisem, S.Martinez, J.C.Stäuble-Pümpin, B., and Griessen, R.Nature 399 (1999) p.439.CrossRefGoogle Scholar
23Yamada, H.Yamasaki, H.Develos-Bagarinao, K., Nakagawa, Y.Mawatari, Y.Nie, J.C.Obara, H. and Kosaka, S.Supercond. Sci. Technol. 17 (2004) p.58.CrossRefGoogle Scholar
24Onabe, K.Nagaya, S.Shimonosono, T.Iijima, Y.Sadakata, N.Saito, T. and Kohno, O.Adv. Cryog. Eng. 44B (1998) p.827.Google Scholar
25Onabe, K.Doi, T.Kashima, N.Nagaya, S. and Saitoh, T.Physica C 392–396 (2003) p. 863.CrossRefGoogle Scholar