Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T18:53:33.481Z Has data issue: false hasContentIssue false

Microstructural informatics for accelerating the discovery of processing–microstructure–property relationships

Published online by Cambridge University Press:  02 August 2016

Olga Wodo
Affiliation:
Department of Materials Design and Innovation, University at Buffalo, The State University of New York, USA; olgawodo@buffalo.edu
Scott Broderick
Affiliation:
Department of Materials Design and Innovation, University at Buffalo, The State University of New York, USA; scottbro@buffalo.edu
Krishna Rajan
Affiliation:
Department of Materials Design and Innovation, University at Buffalo, The State University of New York, USA; krajan3@buffalo.edu
Get access

Abstract

The study of microstructure–property relationships and processing history leading to those relationships is at the core of materials engineering. The historical evolution of the understanding of processing–microstructure–property relationships has largely relied on empirical evidence that, in turn, has helped catalyze theories iteratively linking modeling to experiments, which has then helped the maturation process of materials design. While the power of modeling methods has increased, we have, as of yet, no unified mathematical formalism to seamlessly connect materials chemistry with kinetics and micro- and mesoscale information despite decades of work. In this article, we provide an overview of how “microstructural informatics” permits one to capture the interaction between processing variables and their influence on microstructure–chemistry–property correlations. This includes a particular focus on the use of manifold representations and data compression methods for defining microstructure–chemistry–property relationships that can explain known materials behavior and aid in designing new processing pathways of materials with enhanced properties. The concept of identifying an irreducible representation of microstructure is introduced.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rajan, K., Informatics for Materials Science and Engineering (Butterworth-Heinemann, Burlington, MA, 2013).Google Scholar
Ganapathysubramanian, B., Zabaras, N., Comput. Methods Appl. Mech. Eng. 193, 5017 (2004).Google Scholar
Broderick, S., Rajan, K., Sci. Technol. Adv. Mater. 16, 013501 (2015).CrossRefGoogle Scholar
Dey, P., Bible, J., Datta, S., Broderick, S., Jasinski, J., Sunkara, M., Menon, M., Rajan, K., Comput. Mater. Sci. 83, 185 (2013).CrossRefGoogle Scholar
Balachandran, P.V., Broderick, S.R., Rajan, K., Proc. R. Soc. Lond. A 467, 2271 (2011).Google Scholar
Fischer, C.C., Tibetts, K.J., Morgan, D., Ceder, G., Nat. Mater. 5, 641 (2006).Google Scholar
Trimarchi, G., Zunger, A., Phys. Rev. B Condens. Matter 75, 104113 (2007).CrossRefGoogle Scholar
Jóhannesson, G.H., Bligaard, T., Ruban, A.V., Skriver, H., Jacobsen, K.W., Norskov, J.K., Phys. Rev. Lett. 88, 255506 (2002).CrossRefGoogle Scholar
Dudiy, S.V., Zunger, A., Phys. Rev. Lett. 97, 046401 (2006).Google Scholar
Mohn, C.E., Kob, W., Comput. Mater. Sci. 45, 111 (2009).Google Scholar
Isayev, O., Fourches, D., Muratov, E.N., Oses, C., Rasch, K., Tropsha, A., Curtarolo, S., Chem. Mater. 27, 735 (2014).Google Scholar
Kalindindi, S.R., Int. Mater. Rev. 60, 150 (2015).Google Scholar
Suh, C., Rajan, K., QSAR Comb. Sci. 24, 114 (2005).Google Scholar
Carpinteri, A., Pugno, N., Nat. Mater. 4, 421 (2005).Google Scholar
Wodo, O., Zola, J., Pokuri, B.S.S., Du, P., Ganapathysubramanian, B., Mater. Discov. 1, 21 (2016).Google Scholar
Wodo, O., Ganapathysubramanian, B., Comput. Mater. Sci. 55, 113 (2012).CrossRefGoogle Scholar
Wodo, O., Ganapathysubramanian, B., J. Comput. Phys. 230, 6037 (2011).Google Scholar
Sumudrala, S.K., Zola, J., Aluru, S., Ganapathysubramanian, B., Sci. Program. 2015, 180214 (2015).Google Scholar
Frankel, G.S., Corrosion 71, 1308 (2015).CrossRefGoogle Scholar
Burleigh, T.D., Corrosion 47, 89 (1991).CrossRefGoogle Scholar
Cantwell, P.R., Tang, M., Dillon, S.J., Luo, J., Rohrer, G.S., Harmer, M.P., Acta Mater. 62, 1 (2014).Google Scholar
Yamakov, V., Wolf, D., Phillpot, S.R., Gleiter, H., Acta Mater. 50, 61 (2002).Google Scholar
Markmann, J., Bunzel, P., Rosner, H., Liu, K.W., Padmanabhan, K.A., Birringer, R., Gleiter, H., Weissmuller, J., Scr. Mater. 49, 637 (2003).CrossRefGoogle Scholar
Tschopp, M.A., Solanki, K.N., Gao, F., Sun, X., Khaleel, M.A., Horstemeyer, M.F., Phys. Rev. B Condens. Matter 85, 064108 (2012).Google Scholar
Broderick, S.R., Bryden, A., Suram, S.K., Rajan, K., Ultramicroscopy 132, 121 (2013).Google Scholar
Broderick, S.R., Aourag, H., Rajan, K., J. Am. Ceram. Soc. 94, 2974 (2011).CrossRefGoogle Scholar
Broderick, S.R., Aourag, H., Rajan, K., Physica B 406, 2055 (2011).CrossRefGoogle Scholar
Kong, C.S., Yu, J., Minion, F.C., Rajan, K., ACS Comb. Sci. 13, 562 (2011).Google Scholar
Broderick, S.R., Nowers, J.R., Narasimhan, B., Rajan, K., J. Comb. Chem. 12, 270 (2010).Google Scholar
Andriotis, A.N., Mpourmpakis, G., Broderick, S., Rajan, K., Datta, S., Sunkara, M., Menon, M., J. Chem. Phys. 140, 094705 (2014).Google Scholar
Broderick, S.R., Rajan, K., Europhys. Lett. 95, 57005 (2011).Google Scholar
Srinivasan, S., Broderick, S.R., Zhang, R., Mishra, A., Sinnott, S.B., Saxena, S.K., LeBeau, J.M., Rajan, K., Sci. Rep. 5, 17960 (2015).Google Scholar
Bulatov, V.V., Reed, B.W., Kumar, M., Acta Mater. 65, 161 (2014).CrossRefGoogle Scholar
Ratanaphan, S., Olmsted, D.L., Bulatov, V.V., Holm, E.A., Rollett, A.D., Rohrer, G.S., Acta Mater. 88, 346 (2015).CrossRefGoogle Scholar