Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T08:14:26.680Z Has data issue: false hasContentIssue false

MgB2, a two-gap superconductor for practical applications

Published online by Cambridge University Press:  16 August 2011

Marina Putti
Affiliation:
CNR-SPIN and Dipartimento di Fisica, Università di Genova via Dodecaneso 33, 16146 Genova, Italy; e-mail putti@fisica.unige.it
Giovanni Grasso
Affiliation:
Columbus Superconductors SpA, Via delle Terre Rosse 30, 16133 Genova, Italy; grasso.gianni@clbs.it
Get access

Abstract

The history of superconductivity in MgB2 has been short, but intense. Ten years after its discovery, the two-gap mechanism of superconductivity in MgB2 has been mastered to a considerable extent while developing its superconducting properties in wires that meet the technical and economic requirements of industrial applications. The hope for dry superconductivity (i.e., without any liquid cryogen) using this simple and low-cost material has been recently fulfilled, with current commercial availability of MgB2-based dry MRI machines. We expect that scientific progress in understanding and developing MgB2 conductors will continue, strengthening the base for further deployment of MgB2 in applications. This article presents the main scientific and technical highlights of MgB2, describing its two-gap superconductivity, progress in improving its superconducting properties, the advances toward making MgB2 a fully recognized practical superconductor, and its prospects for ongoing and upcoming applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nakamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J., Nature 410, 63 (2001).CrossRefGoogle Scholar
2.Larbalestier, D.C., Cooley, L.D., Rikel, M.O., Polyanskii, A.A., Jiang, J., Patnaik, S., Cai, X.Y., Feldmann, D.M., Gurevich, A., Squitieri, A.A., Naus, M.T., Eom, C.B., Hellstrom, E.E., Cava, R.J., Regan, K.A., Rogado, N., Hayward, M.A., He, T., Slusky, J.S., Khalifah, P., Inumaru, K., Haas, M., Nature 410, 186 (2001).CrossRefGoogle Scholar
3.Grasso, G., Malagoli, A., Ferdeghini, C., Roncallo, S., Braccini, V., Siri, A.S., Cimberle, M.R., Appl. Phys. Lett. 79, 230 (2001).CrossRefGoogle Scholar
4.Eisterer, M., Supercond. Sci. Technol. 22, 095011 (2009).CrossRefGoogle Scholar
5.Braccini, V., Braccini, V., Gurevich, A., Giencke, J.E., Jewell, M.C., Eom, C.B., Larbalestier, D.C., Pogrebnyakov, A., Cui, Y., Liu, B.T., Hu, Y.F., Redwing, J.M., Li, Q., Xi, X.X., Singh, R.K., Gandikota, R., Kim, J., Wilkens, B., Newman, N., Rowell, J., Moeckly, B., Ferrando, V., Tarantini, C., Marré, D., Putti, M., Ferdeghini, C., Vaglio, R., Haanappel, E., Phys. Rev. B 71, 012504 (2005).CrossRefGoogle Scholar
6.Xi, X.X., Rep. Prog. Phys. 71, 116501 (2008).CrossRefGoogle Scholar
7.Moshchalkov, V., Menghini, M., Nishio, T., Chen, Q.H., Silhanek, A.V., Dao, V.H., Chibotaru, L.F., Zhigadlo, N.D., Karpinski, J., Phys. Rev. Lett. 102, 117001 (2009).CrossRefGoogle Scholar
8.Putti, M., Braccini, V., Ferdeghini, C., Pallecchi, I., Siri, A.S., Gatti, F., Manfrinetti, P., Palenzona, A., Phys. Rev. B 70, 052509 (2004).CrossRefGoogle Scholar
9.Kortus, J., Dolgov, O.V., Kremer, R.K., Golubov, A.A., Phys. Rev. Lett. 94, 027002 (2005).CrossRefGoogle Scholar
10.Putti, M., Vaglio, R., Rowell, J.M., Supercond. Sci. Technol. 21, 043001 (2008).CrossRefGoogle Scholar
11.Putti, M., Brotto, P., Monni, M., Galleani d’Agliano, E., Sanna, A., Massidda, S., Europhys. Lett. 77, 57005 (2007).CrossRefGoogle Scholar
12.Collings, E.W., Sumption, M.D., Bhatia, M., Susner, M.A., Bohnenstiehl, S.D., Supercond. Sci. Technol. 21, 103001 (2008).CrossRefGoogle Scholar
13.Gurevich, A., Physica C 456, 160 (2007).CrossRefGoogle Scholar
14.Brotto, P.Pallecchi, I., Putti, M., Galleani D’Agliano, E., Phys. Rev. B 82, 134512 (2010).CrossRefGoogle Scholar
15.Zhu, Y., Zhu, Y., Pogrebnyakov, A.V., Wilke, R.H., Chen, K., Xi, X.X., Redwing, J.M., Zhuang, C.G., Feng, Q.R., Gan, Z.Z., Singh, R.K., Shen, Y., Newman, N., Rowell, J.M., Hunte, F., Jaroszynski, J., Larbalestier, D.C., Baily, S.A., Balakirev, F.F., Voyles, P.M., Supercond. Sci. Technol. 23, 095008 (2010).CrossRefGoogle Scholar
16.Wilke, R.H.T., Bud’ko, S.L., Canfield, P.C., Finnemore, D.K., Suplinskas, R.J., Hannahs, S.T., Phys. Rev. Lett. 92, 217003 (2004).CrossRefGoogle Scholar
17.Matsumoto, A., Kumakura, H., Kitaguchi, H., Senkowicz, B.J., Jewell, M.C., Hellstrom, E.E., Zhu, Y., Voyles, P.M., Larbalestier, D.C., Appl. Phys. Lett. 89, 132508 (2006).CrossRefGoogle Scholar
18.Sumption, M.D., Bhatia, M., Rindfleisch, M., Tomsic, M., Soltanian, S., Dou, S.X., Collings, E.W., Appl. Phys. Lett. 86, 092507 (2005).CrossRefGoogle Scholar
19.Serquis, A., Serrano, G., Moreno, S.M., Civale, L., Maiorov, B., Balakirev, F., Jaime, M., Supercond. Sci. Technol. 20, L12 (2007).CrossRefGoogle Scholar
20.Gao, Z., Ma, Y., Zhang, X., Wang, D., Yu, Z., Watanabe, K., Yang, H., Wen, H., Supercond. Sci. Technol. 20, 485 (2007).CrossRefGoogle Scholar
21.Senkowicz, B.J., Giencke, J.E., Patnaik, S., Eom, C.B., Hellstrom, E.E., Larbalestier, D.C., Appl. Phys. Lett. 86, 202502 (2005).CrossRefGoogle Scholar
22.Ma, Y., Zhang, X., Awaji, S., Wang, D., Gao, Z., Nishijima, G., Watanabe, K., Supercond. Sci. Technol. 20, L5 (2007).CrossRefGoogle Scholar
23.Kim, J.H., Zhou, S., Hossain, M.S.A., Pan, A.V., Dou, S.X., Appl. Phys. Lett. 89, 142505 (2006).CrossRefGoogle Scholar
24.Braccini, V., Nardelli, D., Penco, R., Grasso, G., Physica C 456, 209 (2007).CrossRefGoogle Scholar
25.Flukiger, R., Lezza, P., Cesaretti, M., Senatore, C., Gladyshevskii, R., IEEE Trans. Appl. Supercond. 17, 2846 (2007).CrossRefGoogle Scholar
26.Matsumoto, A., Kobayashi, Y., Takahashi, K.-I., Kumakura, H., Kitaguchi, H., Appl. Phys. Express 1, 021702 (2008).CrossRefGoogle Scholar
27.Tarantini, C., Aebersold, H.U., Bernini, C., Braccini, V., Ferdeghini, C., Gambardella, U., Lehmann, E., Manfrinetti, P., Palenzona, A., Pallecchi, I., Vignolo, M., Putti, M., Physica C 463465, 211 (2007).CrossRefGoogle Scholar
28.Senkowicz, B.J., Mungall, R.J., Zhu, Y., Jiang, J., Voyles, P.M., Hellstrom, E.E., Larbalestier, D.C., Supercond. Sci. Technol. 21, 035009 (2008).CrossRefGoogle Scholar
29.Romano, G., Vignolo, M., Braccini, V., Malagoli, V., Bernini, A.C., Tropeano, M., Fanciulli, C., Putti, M., Ferdeghini, C., IEEE Trans. Appl. Supercond. 19, 2706 (2009).CrossRefGoogle Scholar
30.Rowell, J.M., Supercond. Sci. Technol. 16, R17 (2003).CrossRefGoogle Scholar
31.Yamamoto, A., Shimoyama, J.-I., Kishio, K., Matsushita, T., Supercond. Sci. Technol. 20, 658 (2007).CrossRefGoogle Scholar
32.Jiang, J., Senkowicz, B.J., Larbalestier, D.C., Hellstrom, E.E., Supercond. Sci. Technol. 19, L33 (2006).CrossRefGoogle Scholar
33.Vignolo, M., Romano, G., Malagoli, A., Braccini, V., Tropeano, M., Bellingeri, E., Fanciulli, C., Bernini, C., Honkimaki, V., Putti, M., Ferdeghini, C., IEEE Trans. Appl. Supercond. 19, 2718 (2009).CrossRefGoogle Scholar
34.Jin, S., Mavoori, H., Bower, C., van Dover, R.B., Nature 411, 563 (2001).CrossRefGoogle Scholar
35.Tomsic, M., Rindfleisch, M., Yue, J., McFadden, K., Doll, D., Phillips, J., Sumption, M.D., Bhatia, M., Bohnenstiehl, S., Collings, E.W., Physica C 456, 203 (2007).CrossRefGoogle Scholar
36.Razeti, M., Angius, S., Bertora, L., Damiani, D., Marabotto, R., Modica, M., Nardelli, D., Perrella, M., Tassisto, M., IEEE Trans. Appl. Supercond. 18, 882 (2008).CrossRefGoogle Scholar
37.Yao, W., Bascun, J., Kim, W.-S., Hahn, S., Lee, H., Iwasa, Y., IEEE Trans. Appl. Supercond. 18, 91 (2008).CrossRefGoogle Scholar
38.Magnusson, N., Runde, M., J. Phys. Conf. Ser. 43, 1019 (2006).CrossRefGoogle Scholar
39.Stenvall, A., Magnusson, N., Jelinek, Z., Grasso, G., Hiltunen, I., Korpela, A., Lehtonen, J., Mikkonen, R., Runde, M., Physica C 468, 487 (2008).CrossRefGoogle Scholar
40.Suhl, H., Matthias, B.T., Walker, L.R., Phys. Rev. Lett. 3, 552 (1959).CrossRefGoogle Scholar
41.Dolgov, O.V., Kremer, R.K., Kortus, J., Golubov, A.A., Shulga, S.V., Phys. Rev. B 72, 024504 (2005).CrossRefGoogle Scholar