Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T19:48:19.290Z Has data issue: false hasContentIssue false

Metal oxide memories based on thermochemical and valence change mechanisms

Published online by Cambridge University Press:  17 February 2012

J. Joshua Yang
Affiliation:
Hewlett Packard Laboratories; jianhuay@hp.com
Isao H. Inoue
Affiliation:
National Institute of Advanced Industrial Science and Technology; i.inoue@aist.go.jp
Thomas Mikolajick
Affiliation:
NaMLab gGmbH; Thomas.mikolajick@namlab.com
Cheol Seong Hwang
Affiliation:
Seoul National University; cheolsh@snu.ac.kr
Get access

Abstract

This article reviews recent progress in understanding the resistive switching (RS) behavior and improvements in device performance of RS metal oxide (MO) thin-film systems and devices. The diverse RS MO materials are classified according to their switching mechanisms and characteristics. For each category, some representative materials are selected, and their characteristics are discussed. In addition, other factors such as the device structure, which also plays a crucial role in determining the device properties, are discussed as well. When applied in a real circuit (e.g., in a crossbar structure), there are device features/characteristics that need to be considered, including the bias polarity for switching, the current-voltage relationship, reliability, and scaling issues. Since nonvolatile RS in many MO materials is primarily associated with localized conduction channels, understanding the nature and the dynamic change of the current path structure is crucial and therefore is reviewed at length here. Guidelines for the choice of materials and access devices and their fabrication methods will also be provided. Finally, this review concludes with the outlook and challenges of MO-based resistance change devices for semiconductor memories.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Eliason, J., Madan, S., McAdams, H., Fox, G., Moise, T., Lin, C., Schwartz, K., Gallia, J., Jabillo, E., Kraus, B., Summerfelt, S., Proc. IEEE Custom Integrated Circuits Conference 2005 427 (2005).Google Scholar
2.Tehrani, S., Proc. of IEEE-IEDM 2006 1 (2006).Google Scholar
3.Lee, K.-J., Cho, B.-H., Cho, W.-Y., Kang, S., Choi, B.-G., Oh, H.-R., Lee, C.-S., Kim, H.-J., Park, J.-M., Wang, Q., Park, M.-H., Ro, Y.-H., Choi, J.-Y., Kim, K.-S., Kim, Y.-R., Shin, I.-C., Lim, K.-W., Cho, H.-K., Choi, C.-H., Chung, W.-R., Kim, D.-E., Yoon, Y.-J., Yu, K.-S., Jeong, G.-T., Jeong, H.-S., Kwak, C.-K., Kim, C.-H., Kim, K., IEEE J. Solid-State Circuits 43, 150 (2008).CrossRefGoogle Scholar
4.Waser, R., Ed., Nanolectronics and Information Technology (Wiley VCH, NY, 2005).Google Scholar
5.Prall, K., Proc. EEE-NVSMW 2004 5 (2004).Google Scholar
6.Waser, R., Dittmann, R., Staikov, G., Szot, K., Adv. Mater. 21, 2632 (2009).CrossRefGoogle Scholar
7.Pinnow, C.-U., Mikolajick, T., J. Electrochem. Soc. 151, K13 (2004).CrossRefGoogle Scholar
8.Sawa, A., Mater. Today 11, 28 (2008).CrossRefGoogle Scholar
9.Ridley, B.K., Proc. Phys. Soc. 82, 954 (1963).CrossRefGoogle Scholar
10.Jäger, D., Baumann, H., Symanczyk, R., Phys. Lett. A 117, 141 (1986).CrossRefGoogle Scholar
11.Schöll, E., Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors (Cambridge University Press, Cambridge, UK, 2001).CrossRefGoogle Scholar
12.Pan, Z., Shum, K., Appl. Phys. Lett. 76, 505 (2000).CrossRefGoogle Scholar
13.Sawa, A., Fujii, T., Kawasaki, M., Tokura, Y., Appl. Phys. Lett. 85, 4073 (2004).CrossRefGoogle Scholar
14.Smits, J.H.A., Meskers, S.C.J., Janssen, R.A.J., Marsman, A.W., de Leeuw, D.M., Adv. Mater. 17, 1169 (2005).CrossRefGoogle Scholar
15.Odagawa, A., Sato, H., Inoue, I.H., Akoh, H., Kawasaki, M., Tokura, Y., Phys. Rev. B 70, 224403 (2004).CrossRefGoogle Scholar
16.Kim, K.M., Choi, B.J., Lee, M.H., Kim, G.H., Song, S.J., Seok, J.Y., Yoon, J.H., Han, S., Hwang, C.S., Nanotechnology 22, 254010 (2011).CrossRefGoogle Scholar
17.Adler, D., Henisch, H.K., Mott, N.F., Rev. Mod. Phys. 50, 209 (1978).CrossRefGoogle Scholar
18.Inoue, I.H., Yasuda, S., Akinaga, H., Takagi, H., Phys. Rev. B 77, 035105 (2008).CrossRefGoogle Scholar
19.Choi, B.J., Jeong, D.S., Kim, S.K., Rohde, C., Choi, S., Oh, J.H., Kim, H.J., Hwang, C.S., Szot, K., Waser, R., Reichenberg, B., Tiedke, S., J. Appl. Phys. 98, 033715 (2005).CrossRefGoogle Scholar
20.Rohde, C., Choi, B.J., Jeong, D.S., Choi, S., Zhao, J.-S., Hwang, C.S., Appl. Phys. Lett. 86, 262907 (2005).CrossRefGoogle Scholar
21.Szot, K., Speier, W., Bihlmayer, G., Waser, R., Nat. Mater. 5, 312 (2006).CrossRefGoogle Scholar
22.Jeong, D.S., Schroeder, H., Waser, R., Appl. Phys. Lett. 89, 082909 (2006).CrossRefGoogle Scholar
23.Wang, S.-Y., Lee, D.-Y., Huang, T.-Y., Wu, J.-W., Tseng, T.-Y., Nanotechnology 21, 495201 (2010).CrossRefGoogle Scholar
24.Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S., Nat. Nanotechnol. 3, 429 (2008).CrossRefGoogle Scholar
25.Jeong, D.S., Schroeder, H., Waser, R., Electrochem. Solid-State Lett. 10, G51 (2007).CrossRefGoogle Scholar
26.Shen, W., Dittmann, R., Waser, R., J. Appl. Phys. 107, 094506 (2010).CrossRefGoogle Scholar
27.Kim, K.M., Jeong, D.S., Hwang, C.S., Nanotechnology 22, 254002 (2011).CrossRefGoogle Scholar
28.Kim, K.M., Kim, G.H., Song, S.J., Seok, J.Y., Lee, M.H., Yoon, J.H., Hwang, C.S., Nanotechnology 21, 305203 (2010).CrossRefGoogle Scholar
29.Lee, M.H., Kim, K.M., Kim, G.H., Seok, J.Y., Song, S.J., Yoon, J.H., Hwang, C.S., Appl. Phys. Lett. 96, 152909 (2010).CrossRefGoogle Scholar
30.Cho, E., Han, S., Ahn, H.-S., Lee, K.-R., Kim, S.K., Hwang, C.S., Phys. Rev. B 73, 193202 (2006).CrossRefGoogle Scholar
31.Mattioli, G., Filippone, F., Alippi, P., Bonapasta, A.A., Phys. Rev. B 78, 241201 (2008).CrossRefGoogle Scholar
32.Jeong, D.S., Schroeder, H., Breuer, U., Waser, R., J. Appl. Phys. 104, 123716 (2008).CrossRefGoogle Scholar
33.Marucco, J.-F., Gautron, J., Lemasson, P., J. Phys. Chem. Solids 42, 363 (1981).CrossRefGoogle Scholar
34.Lee, M.H., Kim, K.M., Song, S.J., Rha, S.H., Seok, J.Y., Jung, J.S., Kim, G.H., Yoon, J.H., Hwang, C.S., Appl. Phys. A 102, 827 (2011).CrossRefGoogle Scholar
35.Kim, K.M., Hwang, C.S., Appl. Phys. Lett. 94, 122109 (2009).CrossRefGoogle Scholar
36.Kwon, D.-H., Kim, K.M., Jang, J.H., Jeon, J., Lee, M.H., Kim, G.H., Li, X., Park, G.-S., Lee, B., Han, S., Kim, M., Hwang, C.S., Nat. Nanotechnol. 5, 148 (2010).CrossRefGoogle Scholar
37.Strachan, J.P., Pickett, M.D., Yang, J.J., Aloni, S., Kilcoyne, A.L.D., Medeiros-Ribeiro, G., Williams, R.S., Adv. Mater. 22, 3573 (2010).CrossRefGoogle Scholar
38.Liborio, L., Mallia, G., Harrison, N., Phys. Rev. B 79, 245133 (2009).CrossRefGoogle Scholar
39.Chang, S.H., Lee, J.S., Chae, S.C., Lee, S.B., Liu, C., Kahng, B., Kim, D.-W., Noh, T.W., Phys. Rev. Lett. 102, 026801 (2009).CrossRefGoogle Scholar
40.Ielmini, D., Cagli, C., Nardi, F., Appl. Phys. Lett. 94, 063511 (2009).CrossRefGoogle Scholar
41.Song, S.J., Kim, K.M., Kim, G.H., Lee, M.H., Seok, J.Y., Jung, R., Hwang, C.S., Appl. Phys. Lett. 96, 112904 (2010).CrossRefGoogle Scholar
42.Hwang, I., Lee, M.-J., Buh, G.-H., Bae, J., Choi, J., Kim, J.-S., Hong, S., Kim, Y.S., Byun, I.-S., Lee, S.-W., Ahn, S.-E., Kang, B.S., Kang, S.-O., Park, B.H., Appl. Phys. Lett. 97, 052106 (2010).CrossRefGoogle Scholar
43.Sato, Y., Tsunoda, K., Kinoshita, K., Noshiro, H., Aoki, M., Sugiyama, Y., IEEE Trans. Electron Devices 55, 118 (2008).CrossRefGoogle Scholar
44.Lee, H.D., Magyari-Kope, B., Nishi, Y., Phys. Rev. B 81, 193202 (2010).CrossRefGoogle Scholar
45.Yoshida, C., Kinoshita, K., Yamasaki, T., Sugiyama, Y., Appl. Phys. Lett. 93, 042106 (2008).CrossRefGoogle Scholar
46.Russo, U., Ielmini, D., Cagli, C., Lacaita, A.L., Spiga, S., Wiemer, C., Perego, M., Fanciulli, M., IEDM Tech. Dig. 775 (2007).Google Scholar
47.Russo, U., Ielmini, D., Cagli, C., Lacaita, A.L., IEEE Trans. Electron Devices 56, 193 (2009).CrossRefGoogle Scholar
48.Lee, M.H., Hwang, C.S., Nanoscale 3, 490 (2011).CrossRefGoogle Scholar
49.Kim, K.M., Choi, B.J., Shin, Y.C., Choi, S., Hwang, C.S., Appl. Phys. Lett. 91, 012907 (2007).CrossRefGoogle Scholar
50.Chang, S.H., Chae, S.C., Lee, S.B., Liu, C., Noh, T.W., Lee, J.S., Kahng, B., Jang, J.H., Kim, M.Y., Kim, D.-W., Jung, C.U., Appl. Phys. Lett. 92, 183507 (2008).CrossRefGoogle Scholar
51.Choi, B.J., Choi, S., Kim, K.M., Shin, Y.C., Hwang, C.S., Appl. Phys. Lett. 89, 012906 (2006).CrossRefGoogle Scholar
52.Kim, G.H., Lee, J.H., Seok, J.Y., Song, S.J., Yoon, J.H., Yoon, K.J., Lee, M.H., Kim, K.M., Lee, H.D., Ryu, S.W., Park, T.J., Hwang, C.S., Appl. Phys. Lett. 98, 262901 (2011).Google Scholar
53.Kim, K.M., Song, S.J., Kim, G.H., Seok, J.Y., Lee, M.H., Yoon, J.H., Park, J., Hwang, C.S., Adv. Funct. Mater. 21, 1587 (2011).CrossRefGoogle Scholar
54.Yang, J.J., Zhang, M.X., Strachan, J.P., Miao, F., Pickett, M.D., Kelley, R.D., Medeiros-Ribeiro, G., Williams, R.S., Appl. Phys. Lett. 97, 232102 (2010).CrossRefGoogle Scholar
55.Yang, J.J., Strachan, J.P., Xia, Q., Ohlberg, D.A.A., Kuekes, P.J., Kelley, R.D., Stickle, W.F., Stewart, D.R., Medeiros-Ribeiro, G., Williams, R.S., Adv. Mater. 22, 4034 (2010).CrossRefGoogle Scholar
56.Yang, J.J., Miao, F., Pickett, M.D., Ohlberg, D.A.A., Stewart, D.R., Lau, C.N., Williams, R.S., Nanotechnology 20, 215201 (2009).CrossRefGoogle Scholar
57.Yang, J.J., Borghetti, J., Murphy, D., Stewart, D.R., Williams, R.S., Adv. Mater. 21, 3754 (2009).CrossRefGoogle Scholar
58.Na-Phattalung, S., Smith, M.F., Kim, K., Du, M.-H., Wei, S.-H., Zhang, S.B., Limpijumnong, S., Phys. Rev. B 73, 125205 (2006).CrossRefGoogle Scholar
59.Lee, M.-J., Lee, C.B., Lee, D., Lee, S.R., Chang, M., Hur, J.H., Kim, Y.-B., Kim, C.-J., Seo, D.H., Seo, S., Chung, U.I., Yoo, I.-K., Kim, K., Nat. Mater. 10, 625 (2011).CrossRefGoogle Scholar
60.Goldman, M., Pangal, K., Naso, G., Goda, A., Proc. Int. Memory Workshop (IMW), (2011), pp. 14.Google Scholar