Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T15:46:32.977Z Has data issue: false hasContentIssue false

Material innovation opportunities for 3D integrated circuits from a wireless application point of view

Published online by Cambridge University Press:  10 March 2015

S.Q. Gu*
Affiliation:
Qualcomm, CA, USA; samgu@qti.qualcomm.com
Get access

Abstract

The mobile revolution has enabled broad applications with a faster response, small form factors, and more data bandwidth, sensing, and processing power. The industry is pursuing three-dimensional (3D) stacked integrated circuits (ICs) in order to provide higher density interconnects between chips and/or functional blocks, which translates to enhanced system performance. These value propositions are attractive, especially for wireless applications, and will likely lead to further growth of this sector. Recent progress has been reported for development of IC stacking technologies, specifically for wireless applications. However, for full high volume deployment of 3D stacked ICs, a number of technical challenges remain, including many opportunities to be addressed by material enhancements. This article reviews the state-of-the-art technology solutions used for 3D IC stacking and highlights the material properties and remaining technology challenges required to meet the demanding specifications for high volume manufacturing of consumer devices. In particular, it focuses on the electrical (dielectrics and metallic) properties of the interconnects, the thermal and mechanical properties of the integrated components, and the ultimate component level/board level reliability characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

IEEE International Solid-State Circuits Conference, “ISSCC 2013 Trends,” available athttp://isscc.org/doc/2013/2013_Trends.pdf.Google Scholar
Carson, F.P., Kim, Y.C., Yoon, I.S., Proc. IEEE, 97 (1), 31 (2009).Google Scholar
Kim, J.-S., Oh, C.S., Lee, H., Lee, D., Hwang, H.R., Hwang, S., Na, B., Moon, J., Kim, J.-G., Park, H., Ryu, J.-W., Park, K., Kang, S.K., Kim, S.-Y., Kim, H., Bang, J.-M., Cho, H., Jang, M., Han, C., Lee, J.-B., Choi, J.S., Jun, Y.-H., IEEE J. Solid-State Circuits 47 (1), 107 (2012).Google Scholar
Kang, U.H., Chung, H.-J., Heo, S., Park, D.-H., Lee, H., Kim, J.H., Ahn, S.-H., Cha, S.-H., Ahn, J., Kwon, D.M., Lee, J.-W., Joo, H.-S., Kim, W.-S., Jang, D.H., Kim, N.S., Choi, J.-H., Chung, T.-G., Yoo, J.-H., Choi, J.S., Kim, C., Jun, Y.-H., IEEE J. Solid-State Circuits 45 (1), 111 (2010).CrossRefGoogle Scholar
Sunohara, M., Tokunaga, T., Kurihara, T., Higashi, M., Electronic Components and Technology Conference 847852 (2008).Google Scholar
Gu, S.Q., Marchal, P., Facchini, M., Wang, F., Suh, M., Lisk, D., Nowak, M., Proc. IEEE IEDM Tech. Dig. 14 (2008).Google Scholar
Wei, A., Singh, J., Bouche, G., Zaleski, M., Augur, R., Senapati, B., Stephens, J., Lin, I., Rashed, M., Yuan, L., Kye, J., Woo, Y., Zeng, J., Levinson, H., Wehbi, A., Hang, P., Ton-That, V., Kanagala, V., Yu, D., Blackwell, D., Beece, A., Gao, S., Thangaraju, S., Alapati, R., Samavedam, S., Proc. IEDM Tech. Deg. 462465 (2014).Google Scholar
Kim, D.W., Vidhya, R., Henderson, B., Ray, U., Gu, S., Zhao, W., Radojcic, R., Nowak, M., IEEE 63rd Electronic Components and Technology Conference 7780 (2013).Google Scholar
Dukovic, J., Ramaswami, S., Pamarthy, S., Yalamanchili, R., Rajagopalan, N., Sapre, K., Cao, Z., Ritzdorf, T., Wang, Y., Eaton, B., Ding, R., Hernandez, M., Naik, M., Mao, D., Tseng, J., Cui, D., Mori, G., Fulmer, P., Sirajuddin, K., Hua, J., Xia, S., Erickson, D., Beica, R., Young, E., Kusler, P., Kulzer, R., Oemardani, S., Dai, H., Xu, X., Okazaki, M., Dotan, K., Yu, C., Lazik, C., Tran, J., Luo, L., Proc. IEEE Memory Workshop, 12 (2010).Google Scholar
Redolfi, A., Velenis, D., Thangaraju, S., Nolmans, P., Jaenen, P., Kostermans, M., Baier, U., Van Besien, E., Dekkers, H., Witters, T., Jourdan, N., Van Ammel, A., Vandersmissen, K., Rodet, S., Philipsen, H.G.G., Radisic, A., Heylen, N., Travaly, Y., Swinnen, B., Beyne, E., Electronic Components and Technology Conference 13841388 (2011).Google Scholar
Chang, H.B., Chang, H.P., Chen, H.Y., Kuo, P.C., Chien, A., Liao, E., Lin, T.C., Wei, J., Lin, Y.C., Chen, Y.H., Yang, K.F., Teng, H.A., Tsai, J., Tseng, Y.C., Chen, S.Y., Hsieh, C.C., Chen, M.F., Liou, Y.H., Wu, T.J., Hou, S.Y., Chiou, W.C., Jeng, S.P., Yu, C.H., Proc. IEEE Symp. VLSI Technol. 173174 (June 2012).Google Scholar
Tsai, W.L., Chang, H.H., Chien, C.H., Lau, J.H., Fu, H C., Chiang, C.W., Kuo, T.Y., Chen, Y.H., Lo, R., Kao, M.J., IEEE Electronic Components and Technology Conference 989998 (2011).Google Scholar
Liu, Y., Li, Menglu, Kim, D.W., Gu, S., Parkinson, D.Y., Blair, J., Tu, K.N., IEEE Electronic Components and Technology Conference 609612 (2014).Google Scholar
Radojcic, R., Nowak, M., Nakamoto, M., AIP Conf. Proc. 1378 (1), 520 (2011).Google Scholar
Nakamoto, M., Radojcic, R., Zhao, W., Dasarapu, V. K., Karmarkar, A.P., Xu, X., “Simulation Methodology and Flow Integration for 3D IC Stress Management,” paper presented at the Custom Integrated Circuits Conference (CICC), pp. 1–4 (San Jose, CA 2010).Google Scholar
Oprins, H., Cherman, V.O., Vandevelde, B., Van der Plas, G., Marchal, P., Beyne, E., IEEE Electronic Component Technology Conference 10811088 (2012).Google Scholar
West, J., Choi, Y.S., Vartuli, C., Symposium on VLSI Technology 6242481, 101102 (2012).Google Scholar