Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T18:57:53.541Z Has data issue: false hasContentIssue false

Lights, nano, action! New plasmonic materials and methods to probe nanoscale phenomena

Published online by Cambridge University Press:  10 March 2015

Jennifer A. Dionne*
Affiliation:
Department of Materials Science and Engineering, Stanford University, USA; jdionne@stanford.edu
Get access

Abstract

The field of plasmonics has transformed the ability to control nanoscale light-matter interactions with applications ranging from high-efficiency photovoltaic modules to ultrasensitive biodetectors, electromagnetic cloaks, and subwavelength integrated photonic circuits. This article summarizes my group’s efforts to contribute to this burgeoning field, with emphasis on our research in quantum plasmonics and optical-frequency magnetism. First, we explore the plasmon resonances of individual nanoparticles as they transition from a classical to a quantum-influenced regime. We then utilize these results to directly monitor hydrogen absorption and desorption in individual palladium nanocrystals. Subsequently, using real-time manipulation of plasmonic particles, we investigate plasmonic coupling between pairs of particles separated by nanometer- and angstrom-scale gaps. For sufficiently small separations, we observe the effects of quantum tunneling between particles on their plasmonic resonances. Finally, using the properties of coupled metallic nanoparticles, we demonstrate the colloidal synthesis of an isotropic metafluid or “metamaterial paint” that exhibits a strong optical-frequency magnetic response and the potential for negative permeabilities and negative refractive indices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D.A., Bartal, G., Zhang, X., Nature 455, 376 (2008).CrossRefGoogle Scholar
Lezec, H.J., Dionne, J.A., Atwater, H.A., Science 316, 430 (2007).CrossRefGoogle Scholar
Soukoulis, C.M., Wegener, M., Nat. Photonics 5, 523 (2011).CrossRefGoogle Scholar
Shalaev, V., Nat. Photonics 1, 1 (2007).CrossRefGoogle Scholar
Yu, N., Capasso, F., Nat. Mater. 13, 139 (2014).Google Scholar
Peng, B., Özdemir, Ş.K., Lei, F., Monifi, F., Gianfreda, M., Long, G.L., Fan, S., Nori, F., Bender, C.M., Yang, L., Nat. Phys. 10, 394 (2014).CrossRefGoogle Scholar
Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N., Phys. Rev. Lett. 103, 093902 (2009).Google Scholar
Feng, L., Nat. Mater. 12, 108 (2012).CrossRefGoogle Scholar
Rüter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D., Nat. Phys. 6, 192 (2010).CrossRefGoogle Scholar
Lazarides, N., Tsironis, G., Phys. Rev. Lett. 110, 053901 (2013).Google Scholar
Chang, L., Jiang, X., Hua, S., Yang, C., Wen, J., Jiang, L., Li, G., Wang, G., Xiao, M., Nat. Photonics 8, 524 (2014).CrossRefGoogle Scholar
Longhi, S., Phys. Rev. A. 82, 031801 (2010).Google Scholar
Scholl, J.A., Koh, A.L., Dionne, J.A., Nature 483, 421 (2013).CrossRefGoogle Scholar
Baldi, A., Narayan, T.C., Koh, A.L., Dionne, J.A., Nat. Mater. 13, 11431148 (2014).Google Scholar
Scholl, J.A., García-Etxarri, A., Koh, A.L., Dionne, J.A., Nano Lett. 13, 564 (2013).Google Scholar
Sheikholeslami, S.N., Alaeian, H., Koh, A.L., Dionne, J.A., Nano Lett. 13, 4137 (2013).Google Scholar
Xia, Y., Halas, N., MRS Bull. 30, 338 (2005).Google Scholar
Dionne, J.A., Atwater, H.A., MRS Bull. 37, 717 (2012).CrossRefGoogle Scholar
Xia, Y., Li, W., Cobley, C.M., Chen, J., Xia, X., Zhang, Q., Yang, M., Cho, E.C., Brown, P.K.. Acc. Chem. Res. 44, 914 (2011).CrossRefGoogle Scholar
Bardhan, R., Lal, S., Joshi, A., Halas, N.J., Acc. Chem. Res. 44, 936 (2011).Google Scholar
Atwater, H.A., Polman, A., Nat. Mater. 9, 205 (2010).Google Scholar
Catchpole, K.R., Polman, A., Opt. Express 16, 21793 (2008).CrossRefGoogle Scholar
Ferry, V.E., Verschuuren, M.A., Li, H.B.T., Schropp, R.E.I., Atwater, H.A., Polman, A., Appl. Phys. Lett. 95, 183503 (2009).Google Scholar
Juan, M.L., Righini, M., Quidant, R., Nat. Photonics 5, 349 (2011).CrossRefGoogle Scholar
Zehtabi-Oskuie, A., Jiang, H., Cyr, B.R., Rennehan, D.W., Al-Balushi, A.A., Gordon, R., Lab Chip 13, 2563 (2013).Google Scholar
Saleh, A.A.E., Dionne, J.A., Nano Lett. 12, 5581 (2012).Google Scholar
Willets, K.A., Van Duyne, R.P., Annu. Rev. Phys. Chem. 58, 267 (2007).Google Scholar
Mayer, K.M., Hafner, J.H., Chem. Rev. 111, 3828 (2011).Google Scholar
Lee, K.-S., El-Sayed, M.A., J. Phys. Chem. B 110, 19220 (2006).Google Scholar
Novo, C., Funston, A.M., Mulvaney, P., Nat. Nanotechnol. 3, 598 (2008).CrossRefGoogle Scholar
Tang, M.L., Liu, N., Dionne, J.A., Alivisatos, A.P., J. Am. Chem. Soc. 133, 13220 (2011).Google Scholar
Peng, S., McMahona, J.M., Schatz, G.C., Gray, S.K., Sun, Y., Proc. Natl. Acad. Sci. U.S.A. 103, 14530 (2010).Google Scholar
Lindfors, K., Kalkbrenner, T., Stoller, P., Sandoghdar, V., Phys. Rev. Lett. 93, 037401 (2004).CrossRefGoogle Scholar
Palomba, S., Novotny, L., Palmer, R.E., Opt. Commun. 281, 480 (2008).Google Scholar
Falsig, H., Hvolbæk, B., Kristensen, I.S., Jiang, T., Bligaard, T., Christensen, C.H., Nørskov, J.K., Angew. Chem. 120, 4913 (2008).Google Scholar
Yamauchi, M., Ikeda, R., Kitagawa, H., Takata, M., J. Phys. Chem. C 112, 3294 (2008).Google Scholar
Bardhan, R., Hedges, L.O., Pint, C.L., Javey, A., Whitelam, S., Urban, J.J., Nat. Mater. 12, 905 (2013).CrossRefGoogle Scholar
Shegai, T., Langhammer, C., Adv. Mater. 23, 4409 (2011).Google Scholar
Liu, N., Lee Tang, M., Hentschel, M., Giessen, H., Alivisatos, A.P., Nat. Mater. 10, 631 (2011).Google Scholar
Zhang, W., Huang, L., Santschi, C., Martin, O.J.F., Nano Lett. 10, 1006 (2010).Google Scholar
Talley, C.E., Jackson, J.B., Oubre, C., Grady, N.K., Hollars, C.W., Lane, S.M., Huser, T.R., Nordlander, P., Halas, N.J., Nano Lett. 5, 1569 (2005).Google Scholar
Sönnichsen, C., Reinhard, B.M., Liphardt, J., Alivisatos, A.P., Nat. Biotechnol. 23, 741 (2005).CrossRefGoogle Scholar
Duan, H., Fernández-Domínguez, A.I., Bosman, M., Maier, S.A., Yang, J.K.W., Nano Lett. 12, 1683 (2012).Google Scholar
Jain, P.K., El-Sayed, M.A., Chem. Phys. Lett. 487, 153 (2010).CrossRefGoogle Scholar
Merlein, J., Kahl, M., Zuschlag, A., Sell, A., Halm, A., Boneberg, J., Leiderer, P., Leitenstorfer, A., Bratschitsch, R., Nat. Photonics 2, 230 (2008).Google Scholar
Yang, L., Wang, H., Yan, B., Reinhard, B.M., J. Phys. Chem. C 114, 4901 (2010).Google Scholar
Ciraci, C., Hill, R.T., Mock, J.J., Urzhumov, Y., Fernández-Domínguez, A.I., Maier, S.A., Pendry, J.B., Chilkoti, A., Smith, D.R.Science 337, 1072 (2012).Google Scholar
Zuloaga, J., Prodan, E., Nordlander, P., Nano Lett. 9, 887 (2009).CrossRefGoogle Scholar
Esteban, R., Borisov, A.G., Nordlander, P., Aizpurua, J., Nat. Commun. 3, 825 (2012).Google Scholar
Marinica, D.C., Kazansky, A.K., Nordlander, P., Aizpurua, J., Borisov, A.G., Nano Lett. 12, 1333 (2012).Google Scholar
Noginova, N., Zhu, G., Mavy, M., Noginov, M.A., J. Appl. Phys. 103, 07E901 (2008).Google Scholar
Schuller, J., Zia, R., Taubner, T., Brongersma, M., Phys. Rev. Lett. 99, 107401 (2007).Google Scholar
García-Etxarri, A., Dionne, J.A., Phys. Rev. B: Condens. Matter 87, 235409 (2013).Google Scholar
Fan, J.A., Wu, C., Bao, K., Bao, J., Bardhan, R., Halas, N.J., Manoharan, V.N., Nordlander, P., Shvets, G., Capasso, F., Science 328, 1135 (2010).Google Scholar
Shafiei, F., Monticone, F., Le, K.Q., Liu, X.-X., Hartsfield, T., Alù, A., Li, X., Nat. Nanotechnol. 8, 95 (2013).CrossRefGoogle Scholar
Sheikholeslami, S.N., García-Etxarri, A., Dionne, J.A., Nano Lett. 11, 3927 (2011).Google Scholar
Urzhumov, Y.A., Shvets, G., Fan, J., Capasso, F., Brandl, D., Nordlander, P., Opt. Express 15, 1 (2007).CrossRefGoogle Scholar
Alu, A., Salandrino, A., Engheta, N., Opt. Express 14, 1 (2006).CrossRefGoogle Scholar
Vallecchi, A., Albani, M., Capolino, F., Opt. Express 19, 1 (2011).Google Scholar
Faraday, M., Experimental Researches in Electricity, vol. 2, p. 257 (1834).Google Scholar