Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T17:48:20.497Z Has data issue: false hasContentIssue false

Interface-driven mechanisms in cubic/noncubic nanolaminates at different scales

Published online by Cambridge University Press:  10 January 2019

I.J. Beyerlein
Affiliation:
Department of Mechanical Engineering, Materials Department, University of California, Santa Barbara, USA; beyerlein@ucsb.edu
J. Wang
Affiliation:
Department of Mechanical and Materials Science Engineering, University of Nebraska, USA; jianwang@unl.edu
Get access

Abstract

Superior structural properties of materials are generally desired in harsh environments, such as elevated temperatures, high rates of impact, and radiation. Composite nanolaminates, built with alternating stacks of crystalline layers, each with nanoscale individual thickness, are proving to exhibit many of these target properties. In principle, the nanolaminate concept can be applied to any two-phase, bimetallic system; however, for a number of reasons, they have been limited to combinations of metals with a cubic crystal structure. There is growing demand to increase the number of advanced materials systems containing noncubic metals, since these metals bear several desirable intrinsic properties. In this article, we cover recent modeling and experimental efforts to understand the complexity in structure, mechanisms, and behavior of noncubic/cubic nanolaminates. We hope this article will facilitate and encourage future studies in this promising area.

Type
Mechanical Behavior of Nanocomposites
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Subedi, S., Beyerlein, I.J., LeSar, R., Rollett, A.D., Scr. Mater. 145, 132 (2018).CrossRefGoogle Scholar
Beyerlein, I.J., Demkowicz, M., Misra, A., Uberuaga, B., Prog. Mater Sci. 74, 125 (2015).CrossRefGoogle Scholar
Wang, J., Misra, A., Curr. Opin. Solid State Mater. Sci. 18, 19 (2014).CrossRefGoogle Scholar
Misra, A., Zhang, X., Demkowicz, M.J., Hoagland, R.G., Nastasi, M., Mater. Res. Soc. Symp. Proc. 1188, LL06-01 (2009).CrossRefGoogle Scholar
Monclús, M.A., Zheng, S.J., Mayeur, J.R., Beyerlein, I.J., Mara, N.A., Polcar, T., Llorca, J., Molina-Aldareguía, J.M., APL Mater . 1, 052103 (2013).CrossRefGoogle Scholar
Mara, N.A., Beyerlein, I.J., Curr. Opin. Solid State Mater. Sci. 19, 265 (2015).CrossRefGoogle Scholar
Mara, N.A., Bhattacharyya, D., Hoagland, R.G., Misra, A., Scr. Mater. 58, 874 (2008).CrossRefGoogle Scholar
Han, W., Demkowicz, M.J., Mara, N.A., Fu, E., Sinha, S., Rollett, A.D., Wang, Y., Carpenter, J.S., Beyerlein, I.J., Misra, A., Adv. Mater. 25, 6975 (2013).CrossRefGoogle Scholar
Han, W.Z., Misra, A., Mara, N.A., Germann, T.C., Baldwin, J.K., Shimada, T., Luo, S.N., Philos. Mag. 91, 4172 (2011).CrossRefGoogle Scholar
Misra, A., Hoagland, R.G., Kung, H., Philos. Mag. 84, 1021 (2004).CrossRefGoogle Scholar
Misra, A., Hoagland, R.G., J. Mater. Res. 20, 2046 (2005).CrossRefGoogle Scholar
Zhang, J.Y., Zhao, J.T., Li, X.G., Wang, Y.Q., Wu, K., Liu, G., Sun, J., Acta Mater . 143, 55 (2018).CrossRefGoogle Scholar
Li, N., Fu, E.G., Wang, H., Carter, J.J., Shao, L., Maloy, S.A., Misra, A., Zhang, X., J. Nucl. Mater. 389, 233 (2009).CrossRefGoogle Scholar
Kim, Y., Budiman, A.S., Baldwin, J.K., Mara, N.A., Misra, A., Han, S.M., J. Mater. Res. 27, 592 (2012).CrossRefGoogle Scholar
Heinz, A., Haszler, A., Keidel, C., Moldenhauer, S., Benedictus, R., Miller, W.S., Mater. Sci. Eng. A 280, 102 (2000).CrossRefGoogle Scholar
Luo, A.A., Int. Mater. Rev. 49, 13 (2004).CrossRefGoogle Scholar
Britton, T.B., Dunne, F.P.E., Wilkinson, A.J., Proc. R. Soc. Lond. A 471, (2015).CrossRefGoogle Scholar
Easton, M., Beer, A., Barnett, M., Davies, C., Dunlop, G., Durandet, Y., Blacket, S., Hilditch, T., Beggs, P., JOM 60, 57 (2008).CrossRefGoogle Scholar
Easton, M.A., Qian, M., Prasad, A., StJohn, D.H., Curr. Opin. Solid State Mater. Sci. 20, 13 (2016).CrossRefGoogle Scholar
Joost, W.J., Krajewski, P.E., Scr. Mater. 128, 107 (2017).CrossRefGoogle Scholar
Rugg, D., Mater. Sci. Technol. 30, 1848 (2014).CrossRefGoogle Scholar
Ardeljan, M., Beyerlein, I.J., McWilliams, B.A., Knezevic, M., Int. J. Plast. 83, 90 (2016).CrossRefGoogle Scholar
Kumar, M.A., Beyerlein, I.J., McCabe, R.J., Tomé, C.N., Nat. Commun. 7, 13826 (2016).CrossRefGoogle Scholar
Lentz, M., Risse, M., Schaefer, N., Reimers, W., Beyerlein, I.J., Nat. Commun. 7, 11068 (2016), doi:10.1038/ncomms11068.CrossRefGoogle Scholar
Barnett, M., Stanford, N., Cizek, P., Beer, A., Xuebin, Z., Keshavarz, Z., JOM 61, 19 (2009).CrossRefGoogle Scholar
Arul Kumar, M., Beyerlein, I.J., Tome, C.N., J. Alloys Compd. 695, 1488 (2017), https://doi.org/10.1016/j.jallcom.2016.10.287.CrossRefGoogle Scholar
Meyers, M.A., Chawla, K.K., Mechanical Behavior of Materials, 2nd ed. (Cambridge University Press, 2008).CrossRefGoogle Scholar
Dregia, S.A., Banerjee, R., Fraser, H.L., Scr. Mater. 39, 217 (1998).CrossRefGoogle Scholar
Frutos, E., Callisti, M., Karlik, M., Polcar, T., Mater. Sci. Eng. A 632, 137 (2015).CrossRefGoogle Scholar
Pathak, S., Velisavljevic, N., Baldwin, J.K., Jain, M., Zheng, S., Mara, N.A., Beyerlein, I.J., Sci. Rep. 7, 8264 (2017).CrossRefGoogle Scholar
Salehinia, I., Wang, J., Bahr, D.F., Zbib, H.M., Int. J. Plast. 59, 119 (2014).CrossRefGoogle Scholar
Li, Z., Yadav, S., Chen, Y., Li, N., Liu, X.-Y., Wang, J., Zhang, S., Baldwin, J.K., Misra, A., Mara, N., Mater. Res. Lett. 5, 426 (2017).CrossRefGoogle Scholar
Watkins, E.B., Majewski, J., Baldwin, J.K., Chen, Y., Li, N., Hoagland, R.G., Yadav, S.K., Liu, X.Y., Beyerlein, I.J., Mara, N.A., Thin Solid Films 616, 399 (2016).CrossRefGoogle Scholar
Zhang, J.Y., Zhang, X., Wang, R.H., Lei, S.Y., Zhang, P., Niu, J.J., Liu, G., Zhang, G.J., Sun, J., Acta Mater . 59, 7368 (2011).CrossRefGoogle Scholar
Ahuja, R., Fraser, H.L., J. Electron. Mater. 23, 1027 (1994).CrossRefGoogle Scholar
Banerjee, R., Ahuja, R., Fraser, H.L., Phys. Rev. Lett. 76, 3778 (1996).CrossRefGoogle Scholar
Zheng, J.Q., Ketterson, J.B., Felcher, G.P., J. Appl. Phys. 53, 3624 (1982).CrossRefGoogle Scholar
Lowe, W.P., Geballe, T.H., Phys. Rev. B 29, 4961 (1984).CrossRefGoogle Scholar
Thompson, G.B., Banerjee, R., Dregia, S.A., Fraser, H.L., Acta Mater . 51, 5285 (2003).CrossRefGoogle Scholar
Ardeljan, M., Knezevic, M., Jain, M., Pathak, S., Kumar, A., Li, N., Mara, N.A., Baldwin, J.K., Beyerlein, I.J., J. Mater. Res. 33, 1311 (2018).CrossRefGoogle Scholar
Ham, B., Zhang, X., Mater. Sci. Eng. A 528, 2028 (2011).CrossRefGoogle Scholar
Hou, Z.Q., Zhang, J.Y., Li, J., Wang, Y.Q., Wu, K., Liu, G., Zhang, G.J., Sun, J., Mater. Sci. Eng. A 684, 78 (2017).CrossRefGoogle Scholar
Junkaew, A., Ham, B., Zhang, X., Arróyave, R., Calphad 45, 145 (2014).CrossRefGoogle Scholar
Chen, Y., Shao, S., Liu, X.Y., Yadav, S.K., Li, N., Mara, N., Wang, J., Acta Mater . 126, 552 (2017).CrossRefGoogle Scholar
Xie, X.Y., “Interface Structure and Deformation Mechanisms of Mg/Nb Multilayers,” MS thesis, University of Nebraska, Lincoln, NE (2018).Google Scholar
Beyerlein, I.J., Zhang, X., Misra, A., Annu. Rev. Mater. Res. 44, 329 (2014).CrossRefGoogle Scholar
Beyerlein, I.J., Arul Kumar, M., “The Stochastic Nature of Deformation Twinning: Application to hcp Materials,” in Handbook of Materials Modeling, Andreoni, W., Yip, S., Eds. (Springer International Publishing 2018), p. 1.Google Scholar
Beyerlein, I.J., Capolungo, L., Marshall, P., McCabe, R., Tomé, C., Philos. Mag. 90, 2161 (2010).CrossRefGoogle Scholar
Bai, B.D., Ed. Adiabatic Shear Localization, 2nd ed. (Elsevier, Oxford, UK, 2012), p. i.Google Scholar
Wang, S.J., Liu, G., Xie, D.Y., Lei, Q., Ramakrishnan, B.P., Mazumder, J., Wang, J., Misra, A., Acta Mater . 156, 52 (2018).CrossRefGoogle Scholar
Nizolek, T.J., Begley, M.R., McCabe, R.J., Avallone, J.T., Mara, N.A., Beyerlein, I.J., Pollock, T.M., Acta Mater . 133, 303 (2017).CrossRefGoogle Scholar
Nizolek, T.J., Mara, N.A., Beyerlein, I.J., Avallone, J.T., Pollock, T.M., Adv. Eng. Mater. 17, 781 (2015).CrossRefGoogle Scholar
Beyerlein, I.J., Knezevic, M., “Mesoscale, Microstructure-Sensitive Modeling for Interface-Dominated, Nanostructured Materials,” in Handbook of Materials Modeling, Andreoni, W., Yip, S., Eds. (Springer International Publishing AG, 2018), p. 1.Google Scholar
Knezevic, M., Beyerlein, I.J., Adv. Eng. Mater. 20, 1700956 (2018).CrossRefGoogle Scholar
Embury, J.D., Hirth, J.P., Acta Metall. Mater. 42, 2051 (1994).CrossRefGoogle Scholar
Misra, A., Hirth, J.P., Hoagland, R.G., Acta Mater . 53, 4817 (2005).CrossRefGoogle Scholar
Carpenter, J.S., Nizolek, T.J., McCabe, R.J., Zheng, S.J., Scott, J.E., Vogel, S.C., Mara, N.A., Pollock, T.M., Beyerlein, I.J., Mater. Res. Lett. 3, 50 (2015).CrossRefGoogle Scholar
Ardeljan, M., Savage, D.J., Kumar, A., Beyerlein, I.J., Knezevic, M., Acta Mater . 115, 189 (2016).CrossRefGoogle Scholar
Beyerlein, I.J., McCabe, R.J., Tomé, C.N., J. Mech. Phys. Solids 59, 988 (2011).CrossRefGoogle Scholar
Beyerlein, I.J., Tóth, L.S., Prog. Mater. Sci. 54, 427 (2009).CrossRefGoogle Scholar
Valiev, R.Z., Langdon, T.G., Prog. Mater. Sci. 51, 881 (2006).CrossRefGoogle Scholar
Saito, Y., Utsunomiya, H., Tsuji, N., Sakai, T., Acta Mater . 47, 579 (1999).CrossRefGoogle Scholar
Kikuchi, S., Kuwahara, H., Mazaki, N., Urai, S., Miyamura, H., Mater. Sci. Eng. A. 234, 1114 (1997).CrossRefGoogle Scholar
Shingu, P.H., Ishihara, K.N., Otsuki, A., Daigo, I., Mater. Sci. Eng. A 304, 399 (2001).CrossRefGoogle Scholar
Nizolek, T., Mara, N.A., Beyerlein, I.J., Avallone, J.T., Scott, J.E., Pollock, T.M., Metallogr. Microstruct. Anal. 3, 470 (2014).CrossRefGoogle Scholar
Shingu, P.H., Ishihara, K.N., Otsuki, A., Hashimoto, M., Hasegawa, N., Daigo, I., Huang, B., J. Metastab. Nanocryst. Mater. 2, 293 (1999).Google Scholar
Han, W.Z., Cerreta, E.K., Mara, N.A., Beyerlein, I.J., Carpenter, J.S., Zheng, S.J., Trujillo, C.P., Dickerson, P.O., Misra, A., Acta Mater . 63, 150 (2014).CrossRefGoogle Scholar
Beyerlein, I.J., Mayeur, J.R., Zheng, S., Mara, N.A., Wang, J., Misra, A., Proc. Natl. Acad. Sci. U.S.A. 111, 4386 (2014).CrossRefGoogle Scholar
Beyerlein, I.J., Caro, A., Demkowicz, M.J., Mara, N.A., Misra, A., Uberuaga, B.P., Mater. Today 16, 443 (2013).CrossRefGoogle Scholar
Zheng, S., Beyerlein, I.J., Carpenter, J.S., Kang, K., Wang, J., Han, W., Mara, N.A., Nat. Commun. 4, 1696 (2013).CrossRefGoogle Scholar
Nizolek, T., Beyerlein, I.J., Mara, N.A., Avallone, J.T., Pollock, T.M., Appl. Phys. Lett. 108, 051903 (2016).CrossRefGoogle Scholar
Dehsorkhi, R.N., Qods, F., Tajally, M., Mater. Sci. Eng. A 530, 63 (2011).CrossRefGoogle Scholar
Chang, H., Zheng, M.Y., Xu, C., Fan, G.D., Brokmeier, H.G., Wu, K., Mater. Sci. Eng. A 543, 249 (2012).CrossRefGoogle Scholar
Yang, D., Cizek, P., Hodgson, P., Wen, C.e., Scr. Mater. 62, 321 (2010).CrossRefGoogle Scholar
Ghalandari, L., Mahdavian, M.M., Reihanian, M., Mater. Sci. Eng. A 593, 145 (2014).CrossRefGoogle Scholar
Sun, Y.F., Tsuji, N., Fujii, H., Li, F.S., J. Alloys Compd. 504 (Suppl.) 1, S443 (2010).CrossRefGoogle Scholar
Ardeljan, M., Knezevic, M., Nizolek, T., Beyerlein, I.J., Mara, N.A., Pollock, T.M., Int. J. Plast. 74, 35 (2015).CrossRefGoogle Scholar