Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T15:02:45.909Z Has data issue: false hasContentIssue false

In Situ Transmission Electron Microscopy Studies of the Solid–Liquid Interface

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

In situ transmission electron microscopy (TEM) studies allow one to determine the structure, chemistry, and kinetic behavior of solid–liquid (S–L) interfaces with subnanometer spatial resolution. This article illustrates some important contributions of in situ TEM to our understanding of S–L interfaces in Al-Si alloys and liquid In particles in Al and Fe matrices.Four main areas are discussed:ordering in the liquid at a S–L interface, compositional changes across the interface, the kinetics and mechanisms of interface migration, and the contact angles and equilibrium melting temperature of small particles.Results from these studies reveal that (1)partially ordered layers form in the liquid at a Si{111} S–L interface in an Al–Si alloy, (2)the crystalline and compositional changes occur simultaneously across an Al S–L interface, (3)the Al interface is diffuse and its growth can be followed at velocities of a fewnm/s at extremely low undercoolings, and (4)the melting temperature of In particles less than ~ 10 nm in diameter can be raised or lowered in Al or Fe, depending on the contact angle that the S–L interface makes at the three-phase junction. These results illustrate the benefits of in situ TEM for providing fundamental insight into the mechanisms that control the behavior of S–L interfaces in materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Johnson, E., Science 296 (2002) p.477.CrossRefGoogle Scholar
2Howe, J.M., Interfaces in Materials (John Wiley & Sons, New York, 1997) pp.219291.Google Scholar
3Williams, D.B. and Carter, C.B., Transmission Electron Microscopy: ATextbook for Materials Science (Plenum Press, New York, 1996).CrossRefGoogle Scholar
4Fultz, B. and Howe, J.M., Transmission Electron Microscopy and Diffractometry of Materials (Springer-Verlag, Berlin, 2001).CrossRefGoogle Scholar
5Sasaki, K. and Saka, H., Philos. Mag. A. 63 (1991) p.1207.CrossRefGoogle Scholar
6Howe, J.M., Philos. Mag. A 74 (1996) p.761.CrossRefGoogle Scholar
7Donneley, S.E., Birtcher, R.C., Allen, C.W., Morrison, I., Furuya, K., Song, M., Mitsuishi, K., and Dahmen, U., Science 296 (2002) p.507.CrossRefGoogle Scholar
8Arai, S., Tsukimoto, S., Miyai, H., and Saka, H., J.Electron Microsc. 48 (1999) p.317.CrossRefGoogle Scholar
9Tsukimoto, S., Arai, S., Konno, M., Kamino, T., Sasaki, K., and Saka, H., J. Microsc. 203 (2000) p.17.CrossRefGoogle Scholar
10Storaska, G.A., Moore, K.T., and Howe, J.M., Philos. Mag. A 84 (2004) 2619.CrossRefGoogle Scholar
11Sinclair, R., Acta Cryst. A44 (1988) p.26.Google Scholar
12Howe, J.M., Mater. Trans. JIM 39 (1998) p.965.CrossRefGoogle Scholar
13Saka, H., Sasaki, K., Ohashi, T., Ohtsuka, I., Kamino, T., and Tomita, M., Ultramicrosc. 39 (1991) p.110.CrossRefGoogle Scholar
14Gabrisch, H., Kjeldgaard, L., Johnson, E., and Dahmen, U., Acta Metall. 49 (2001) p.4259.Google Scholar
15Arai, S., Tsukimoto, S., and Saka, H., Microsc. Microanal. 4 (1998) p.264.CrossRefGoogle Scholar
16Storaska, G.A. and Howe, J.M., Mater. Sci. Eng., A 368 (2004) p.183.CrossRefGoogle Scholar
17Murray, J.L. and McAlister, A.J., Bull. Alloy Phase Diagrams 5 (1984) p.74.CrossRefGoogle Scholar
18Kamino, T., Sasaki, K., and Saka, H., Microsc. Microanal. 3 (1997) p.393.CrossRefGoogle Scholar
19Storaska, G.A., MS thesis, University of Virginia (2001).Google Scholar
20Yokota, T., Howe, J.M., and Murayama, M., Phys. Rev. Lett. 91 265504 (2003).CrossRefGoogle Scholar
21Murray, J.L., Bull. Alloy Phase Diagrams 4 (1983) p.30.CrossRefGoogle Scholar
22Egerton, R.F., Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd Ed. (Plenum Press, New York, 1996).CrossRefGoogle Scholar
23Sasaki, K. and Saka, H., Philos. Mag., A 63 (1991) p.1207.CrossRefGoogle Scholar
24Ohashi, T., Kuroda, K., and Saka, H., Philos. Mag., B 65 (1992) p.1041.CrossRefGoogle Scholar
25Cahn, J.W., Acta Metall. 8 (1960) p.554.CrossRefGoogle Scholar
26Cahn, J.W., Hillig, W.B., and Sears, G.W., Acta Metall. 12 (1964) p.1421.CrossRefGoogle Scholar
27Flemings, M.C., Solidification Processing (McGraw-Hill, New York, 1974) pp. 31, 284, 301, 307, and 322.Google Scholar
28and, S.D. PetevesAbbaschian, R., Metall. Trans., A 22 (1991) pp. 1259 and 1271.Google Scholar
29Cahn, J.W., in Crystal Growth (Pergamon Press, New York, 1957) p.681.Google Scholar
30Borel, J., Surf. Sci. 106 (1981) p.1.CrossRefGoogle Scholar
31Kofman, R., Cheyssac, P., Aouj, A., Lereah, Y., Deudtscher, G., Ben-David, T., Penisson, J.M., and Bourret, A., Surf. Sci. 303 (1994) p.231.CrossRefGoogle Scholar
32Pawlow, P., Z. Phys. Chem. 65 (1909) p. 545.CrossRefGoogle Scholar
33Allen, G.L., Bayles, R.A., Gile, W.W., and Jesser, W.A., Thin Solid Films 144 (1986) p.297.CrossRefGoogle Scholar