Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T06:59:46.440Z Has data issue: false hasContentIssue false

In situ and operando probing of solid–solid interfaces in electrochemical devices

Published online by Cambridge University Press:  10 October 2018

T.A. Wynn
Affiliation:
University of California, San Diego, USA; twynn@eng.ucsd.edu
J.Z. Lee
Affiliation:
University of California, San Diego, USA; jzlee@eng.ucsd.edu
A. Banerjee
Affiliation:
University of California, San Diego, USA; a7banerjee@eng.ucsd.edu
Y.S. Meng
Affiliation:
University of California, San Diego, USA; shirleymeng@ucsd.edu
Get access

Abstract

Solid-state electrolytes can offer improved lithium-ion battery safety while potentially increasing the energy density by enabling alkali metal anodes. There have been significant research efforts to improve the ionic conductivity of solid-state electrolytes and the electrochemical performance of all-solid-state batteries; however, the root causes of their poor performance—interfacial reaction and subsequent impedance growth—are poorly understood. This is due to the dearth of effective characterization techniques for probing these buried interfaces. In situ and operando methodologies are currently under development for solid-state interfaces, and they offer the potential to describe the dynamic interfacial processes that serve as performance bottlenecks. This article highlights state-of-the-art solid–solid interface probing methodologies, describes practical limitations, and describes a future for dynamic interfacial characterization.

Type
Frontiers of Solid-State Batteries
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dudney, N., West, W.C., Nanda, J., Eds., Handbook of Solid State Batteries, 2nd ed. (World Scientific, Singapore, 2016).Google Scholar
Kerman, K., Luntz, A., Viswanathan, V., Chiang, Y.-M., Chen, Z., J. Electrochem. Soc. 164, A1731 (2017).CrossRefGoogle Scholar
Ban, C.W., Choi, G.M., Solid State Ionics 140, 285 (2001).CrossRefGoogle Scholar
Varzi, A., Raccichini, R., Passerini, S., Scrosati, B., J. Mater. Chem. A 4, 17251 (2016).CrossRefGoogle Scholar
Maier, J., Ber. Bunsenges. Phys. Chem. 93, 1468 (1989).CrossRefGoogle Scholar
Richards, W.D., Miara, L.J., Wang, Y., Kim, J.C., Ceder, G., Chem. Mater. 28, 266 (2016).CrossRefGoogle Scholar
Zhu, Y., He, X., Mo, Y., ACS Appl. Mater. Interfaces 7, 23685 (2015).CrossRefGoogle Scholar
Lin, F., Liu, Y., Yu, X., Cheng, L., Singer, A., Shpyrko, O.G., Xin, H.L., Tamura, N., Chem. Rev. 117, 13123 (2017).CrossRefGoogle Scholar
Mehdi, B.L., Gu, M., Parent, L.R., Xu, W., Nasybulin, E.N., Chen, X., Unocic, R.R., Xu, P., Welch, D.A., Abellan, P., Zhang, J.G., Liu, J., Wang, C.M., Arslan, I., Evans, J., Browning, N.D., Microsc. Microanal. 20, 484 (2014).CrossRefGoogle Scholar
Taheri, M.L., Stach, E.A., Arslan, I., Crozier, P.A., Kabius, B.C., LaGrange, T., Minor, A.M., Takeda, S., Tanase, M., Wagner, J.B., Sharma, R., Ultramicroscopy 170, 86 (2016).CrossRefGoogle Scholar
Yuan, Y., Amine, K., Lu, J., Shahbazian-Yassar, R., Nat. Commun. 8, 1 (2017).Google Scholar
Tripathi, A.M., Su, W.-N., Hwang, B.J., Chem. Soc. Rev. 47, 736 (2018).CrossRefGoogle Scholar
Iriyama, Y., Kako, T., Yada, C., Abe, T., Ogumi, Z., Solid State Ionics 176, 2371 (2005).CrossRefGoogle Scholar
Amiki, Y., Sagane, F., Yamamoto, K., Hirayama, T., Sudoh, M., Motoyama, M., Iriyama, Y., J. Power Sources 241, 583 (2013).CrossRefGoogle Scholar
Kato, T., Hamanaka, T., Yamamoto, K., Hirayama, T., Sagane, F., Motoyama, M., Iriyama, Y., J. Power Sources 260, 292 (2014).CrossRefGoogle Scholar
Maier, J., Prog. Solid State Chem. 23, 171 (1995).CrossRefGoogle Scholar
Sata, N., Eberman, K., Eberl, K., Maier, J., Nature 408, 946 (2000).CrossRefGoogle Scholar
Haruyama, J., Sodeyama, K., Han, L., Takada, K., Tateyama, Y., Chem. Mater. 26, 4248 (2014).CrossRefGoogle Scholar
Gittleson, F.S., El Gabaly, F., Nano Lett. 17, 6974 (2017).CrossRefGoogle Scholar
Zhu, Y., He, X., Mo, Y., J. Mater. Chem. A 4, 1 (2016).Google Scholar
Miara, L., Windmüller, A., Tsai, C.L., Richards, W.D., Ma, Q., Uhlenbruck, S., Guillon, O., Ceder, G., ACS Appl. Mater. Interfaces 8, 26842 (2016).CrossRefGoogle Scholar
Wang, Z., Lee, J.Z., Xin, H.L., Han, L., Grillon, N., Guy-Bouyssou, D., Bouyssou, E., Proust, M., Meng, Y.S., J. Power Sources 324, 342 (2016).CrossRefGoogle Scholar
Wu, E.A., Kompella, C.S., Zhu, Z., Lee, J.Z., Lee, S.C., Chu, I.H., Nguyen, H., Ong, S.P., Banerjee, A., Meng, Y.S., ACS Appl. Mater. Interfaces 10, 10076 (2018).CrossRefGoogle Scholar
Lee, J.Z., Wynn, T.A., Schroeder, M.A., Alvarado, J., Wang, X., Xu, K., Meng, Y.S., “Cryogenic focused ion beam characterization of lithium metal anodes for Li-ion batteries,” (forthcoming).Google Scholar
Wang, X., Zhang, M., Alvarado, J., Wang, S., Sina, M., Lu, B., Bouwer, J., Xu, W., Xiao, J., Zhang, J.G., Liu, J., Meng, Y.S., Nano Lett. 17, 7606 (2017).CrossRefGoogle Scholar
Li, Y., Li, Y., Pei, A., Yan, K., Sun, Y., Wu, C.L., Joubert, L.M., Chin, R., Koh, A.L., Yu, Y., Perrino, J., Butz, B., Chu, S., Cui, Y., Science 358, 506 (2017).CrossRefGoogle Scholar
Schwöbel, A., Hausbrand, R., Jaegermann, W., Solid State Ionics 273, 51 (2015).CrossRefGoogle Scholar
Wenzel, S., Leichtweiss, T., Krüger, D., Sann, J., Janek, J., Solid State Ionics 278, 98 (2015).CrossRefGoogle Scholar
Wenzel, S., Randau, S., Leichtweiß, T., Weber, D.A., Sann, J., Zeier, W.G., Janek, J., Chem. Mater. 28, 2400 (2016).CrossRefGoogle Scholar
Ma, C., Cheng, Y., Yin, K., Luo, J., Sharafi, A., Sakamoto, J., Li, J., More, K.L., Dudney, N.J., Chi, M., Nano Lett. 16, 7030 (2016).CrossRefGoogle Scholar
Yamamoto, K., Iriyama, Y., Asaka, T., Hirayama, T., Fujita, H., Nonaka, K., Miyahara, K., Sugita, Y., Ogumi, Z., Electrochem. Commun. 20, 113 (2012).CrossRefGoogle Scholar
Yamamoto, K., Iriyama, Y., Asaka, T., Hirayama, T., Fujita, H., Fisher, C.A.J., Nonaka, K., Sugita, Y., Ogumi, Z., Angew. Chem. Int. Ed. Engl. 49, 4414 (2010).CrossRefGoogle Scholar
Aizawa, Y., Yamamoto, K., Sato, T., Murata, H., Yoshida, R., Fisher, C.A.J., Kato, T., Iriyama, Y., Hirayama, T., Ultramicroscopy, 178, 20 (2017).CrossRefGoogle Scholar
Santhanagopalan, D., Qian, D., McGilvray, T., Wang, Z., Wang, F., Camino, F., Graetz, J., Dudney, N., Meng, Y.S., J. Phys. Chem. Lett. 5, 298 (2014).CrossRefGoogle Scholar
Wang, Z., Santhanagopalan, D., Zhang, W., Wang, F., Xin, H.L., He, K., Li, J., Dudney, N., Meng, Y.S., Nano Lett. 16, 3760 (2016).CrossRefGoogle Scholar
Ruzmetov, D., Oleshko, V.P., Haney, P.M., Lezec, H.J., Karki, K., Baloch, K.H., Agrawal, A.K., Davydov, A.V., Krylyuk, S., Liu, Y., Huang, J., Tanase, M., Cumings, J., Talin, A.A., Nano Lett. 12, 505 (2012).CrossRefGoogle Scholar
Masuda, H., Ishida, N., Ogata, Y., Ito, D., Fujita, D., Nanoscale 9, 893 (2017).CrossRefGoogle Scholar
Chien, P.-H., Feng, X., Tang, M., Rosenberg, J.T., O’Neill, S., Zheng, J., Grant, S.C., Hu, Y.-Y., J. Phys. Chem. Lett. 9, 1990 (2018).CrossRefGoogle Scholar
Williams, D.B., Carter, C.B., Transmission Electron Microscopy: A Textbook for Materials Science (Springer, New York, 2009), vols. 1–4.CrossRefGoogle Scholar
Radetic, T., Gautam, A., Ophus, C., Czarnik, C., Dahmen, U., Microsc. Microanal. 20, 1594 (2014).CrossRefGoogle Scholar
Milazzo, A.-C., Cheng, A., Moeller, A., Lyumkis, D., Jacovetty, E., Polukas, J., Ellisman, M.H., Xuong, N.-H., Carragher, B., Potter, C.S., J. Struct. Biol. 173, 404 (2011).CrossRefGoogle Scholar
Gong, Y., Zhang, J., Jiang, L., Shi, J.A., Zhang, Q., Yang, Z., Zou, D., Wang, J., Yu, X., Xiao, R., Hu, Y.S., Gu, L., Li, H., Chen, L., J. Am. Chem. Soc. 139, 4274 (2017).CrossRefGoogle Scholar