Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T12:43:52.730Z Has data issue: false hasContentIssue false

Illuminating nano-bio interactions: A spectroscopic perspective

Published online by Cambridge University Press:  13 November 2014

Ramakrishna Podila
Affiliation:
Clemson Nanomaterials Center, Clemson University, USA;rpodila@g.clemson.edu
Jared M. Brown
Affiliation:
University of Colorado Anschutz Medical Campus, USA;jared.brown@ucdenver.edu
Anne Kahru
Affiliation:
National Institute of Chemical Physics and Biophysics, Estonia;anne.kahru@kbfi.ee
Apparao M. Rao
Affiliation:
Department of Physics and Astronomy, Clemson University, USA;arao@clemson.edu
Get access

Abstract

Engineered nanomaterials (ENMs) strongly interact with biomolecules and cells due to their similar size scales. Consequently, ENMs are beginning to emerge as new medical diagnostic tools, probes in cell biology, and delivery vehicles, compelling us to understand the interactions at the nano-bio interface. Optical spectroscopic tools are excellent probes to characterize ENMs and investigate their interactions with complex biological systems, including biomolecules, cells, and even whole animals alike. Here, we discuss the role of many optical spectroscopic techniques such as fluorescence, Raman, surface plasmon, and infrared spectroscopy in elucidating nano-bio interactions. While these spectroscopic tools have the ability to provide valuable information on ENM distribution in biosystems, ENM interaction with proteins, and the mechanisms by which ENMs elicit an adverse physiological response, there are many challenges that remain to be addressed to improve their scope, resolution, and throughput.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Maynard, A.D., Nat. Nanotechnol. 9 (3), 159 (2014).CrossRefGoogle Scholar
Podila, R., Brown, J.M., J. Biochem. Mol. Toxicol. 27 (1), 50 (2013).CrossRefGoogle Scholar
Poland, C.A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W.A.H., Seaton, A., Stone, V., Brown, S., MacNee, W., Donaldson, K., Nat. Nanotechnol. 3 (7), 423 (2008).CrossRefGoogle Scholar
Shannahan, J.H., Brown, J.M., Curr. Opin. Allergy Clin. Immunol. 14 (2), 95 (2014).CrossRefGoogle Scholar
Miao, A.-J., Zhang, X.-Y., Luo, Z., Chen, C.-S., Chin, W.-C., Santschi, P.H., Quigg, A., Environ. Toxicol. Chem. 29 (12), 2814 (2010).CrossRefGoogle Scholar
Bonner, J.C., Silva, R.M., Taylor, A.J., Brown, J.M., Hilderbrand, S.C., Castranova, V., Porter, D., Elder, A., Oberdoerster, G., Harkema, J.R., Bramble, L.A., Kavanagh, T.J., Botta, D., Nel, A., Pinkerton, K.E., Environ. Health Perspect. 121 (6), 676 (2013).CrossRefGoogle Scholar
Meng, H., Chen, Z., Xing, G., Yuan, H., Chen, C., Zhao, F., Zhang, C., Zhao, Y., Toxicol. Lett. 175 (1–3), 102 (2007).CrossRefGoogle Scholar
Karlsson, H.L., Cronholm, P., Gustafsson, J., Moeller, L., Chem. Res. Toxicol. 21 (9), 1726 (2008).CrossRefGoogle Scholar
Derfus, A.M., Chan, W.C.W., Bhatia, S.N., Nano Lett. 4 (1), 11 (2004).CrossRefGoogle Scholar
Yang, X., Gondikas, A.P., Marinakos, S.M., Auffan, M., Liu, J., Hsu-Kim, H., Meyer, J.N., Environ. Sci. Technol. 46 (2), 1119 (2012).CrossRefGoogle Scholar
Kittler, S., Greulich, C., Diendorf, J., Koeller, M., Epple, M., Chem. Mater. 22 (16), 4548 (2010).CrossRefGoogle Scholar
Liu, Z., Tabakman, S., Welsher, K., Dai, H., Nano Res. 2 (2), 85 (2009).CrossRefGoogle Scholar
Yamashita, K., Yoshioka, Y., Higashisaka, K., Mimura, K., Morishita, Y., Nozaki, M., Yoshida, T., Ogura, T., Nabeshi, H., Nagano, K., Abe, Y., Kamada, H., Monobe, Y., Imazawa, T., Aoshima, H., Shishido, K., Kawai, Y., Mayumi, T., Tsunoda, S.-I., Itoh, N., Yoshikawa, T., Yanagihara, I., Saito, S., Tsutsumi, Y., Nat. Nanotechnol. 6 (5), 321 (2011).CrossRefGoogle Scholar
Moore, T.L., Podila, R., Alexis, F., Rao, A.M., Part. Part. Syst. Charact. (forthcoming), doi: 10.1002/ppsc.201300379.CrossRefGoogle Scholar
Jorio, A., Cancado, L.G., Phys. Chem. Chem. Phys. 14 (44), 15246 (2012).CrossRefGoogle Scholar
Schipper, M.L., Nakayama-Ratchford, N., Davis, C.R., Kam, N.W.S., Chu, P., Liu, Z., Sun, X., Dai, H., Gambhir, S.S., Nat. Nanotechnol. 3 (4), 216 (2008).CrossRefGoogle Scholar
Smith, B.R., Zavaleta, C., Rosenberg, J., Tong, R., Ramunas, J., Liu, Z., Dai, H., Gambhir, S.S., Nano Today 8 (2), 126 (2013).CrossRefGoogle Scholar
Wingard, C.J., Walters, D.M., Cathey, B.L., Hilderbrand, S.C., Katwa, P., Lin, S., Ke, P.C., Podila, R., Rao, A.M., Lust, R.M., Brown, J.M., Nanotoxicology 5 (4), 531 (2011).CrossRefGoogle Scholar
Podila, R., Vedantam, P., Ke, P.C., Brown, J.M., Rao, A.M., J. Phys. Chem. C 116 (41), 22098 (2012).CrossRefGoogle Scholar
Shannahan, J.H., Brown, J.M., Chen, R., Ke, P.C., Lai, X., Mitra, S., Witzmann, F.A., Small 9 (12), 2171 (2013).CrossRefGoogle Scholar
Shannahan, J.H., Lai, X., Ke, P.C., Podila, R., Brown, J.M., Witzmann, F.A., PloS One 8 (9), 374001 (2013).CrossRefGoogle Scholar
Nel, A., Xia, T., Madler, L., Li, N., Science 311 (5761), 622 (2006).CrossRefGoogle Scholar
Oberdorster, G., Philos. Trans. R. Soc. Lond. A 358 (1775), 2719 (2000).CrossRefGoogle Scholar
Donaldson, K., Stone, V., Gilmour, P.S., Brown, D.M., MacNee, W., Philos. Trans. R. Soc. Lond. A 358 (1775), 2741 (2000).CrossRefGoogle Scholar
Costa, D., Guignard, J., Zalma, R., Pezerat, H., Toxicol. Ind. Health 5 (6), 1061 (1989).CrossRefGoogle Scholar
Podila, R., Chen, R., Ke, P.C., Brown, J.M., Rao, A.M., Appl. Phys. Lett. 101 (26), 263701 (2012).CrossRefGoogle Scholar
Fairbairn, N., Christofidou, A., Kanaras, A.G., Newman, T.A., Muskens, O.L., Phys. Chem. Chem. Phys. 15, 4163 (2013).CrossRefGoogle Scholar
Casals, E., Pfaller, T., Duschl, A., Oostingh, G.J., Puntes, V., ACS Nano 4 (7), 3623 (2010).CrossRefGoogle Scholar
Kathiravan, A., Paramaguru, G., Renganathan, R., J. Mol. Struct. 934 (1–3), 129 (2009).CrossRefGoogle Scholar
Ivask, A., Juganson, K., Bondarenko, O., Mortimer, M., Aruoja, V., Kasemets, K., Blinova, I., Heinlaan, M., Slaveykova, V., Kahru, A., Nanotoxicology 8 (S1), 57 (2014).CrossRefGoogle Scholar
Brunner, T.J., Wick, P., Manser, P., Spohn, P., Grass, R.N., Limbach, L.K., Bruinink, A., Stark, W.J., Environ. Sci. Technol. 40, 4374 (2006).CrossRefGoogle Scholar
Bondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M., Kahru, A., Arch. Toxicol. 87 (7), 1181 (2013).CrossRefGoogle Scholar
Ivask, A., Rõlova, T., Kahru, A., BMC Biotech. 9 (1), 41 (2009).CrossRefGoogle Scholar
Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.-C., Kahru, A., Chemosphere 71 (7), 1308 (2008).CrossRefGoogle Scholar
Zagorovsky, K., Chen, W.C.W., Nat. Mater. 12, 285 (2013).CrossRefGoogle Scholar