Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T09:22:31.379Z Has data issue: false hasContentIssue false

Hydrogen in Nanostructured, Carbon-Related, and Metallic Materials

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Recent developments in hydrogen interaction with carbonaceous materials are reviewed in this article. The interaction is based on van der Waals attractive forces (physisorption), or the overlap of the highest occupied molecular orbitals of carbon with the hydrogen electron, overcoming the activation-energy barrier for hydrogen dissociation (chemisorption). While the physisorption of hydrogen limits the hydrogen-to-carbon ratio to less than one hydrogen atom per two carbon atoms (i.e., 4.2 mass%), in chemisorption, a ratio of two hydrogen atoms per one carbon atom is realized (e.g., in polyethylene). However, the materials with large hydrogen-to-carbon ratios only liberate the hydrogen at elevated temperature. No evidence, apart from theoretical calculations, was found for a new hydrogen-adsorption phenomenon on carbon nanotubes (CNTs), as compared with high-surface-area graphite. The curvature of CNTs and fullerenes increases the reactivity of these materials with hydrogen and leads more easily to the formation of hydrocarbons, as compared with graphite. Nanocrystalline or amorphous carbon exhibits an intermediate state for hydrogen between physisorption and chemisorption and absorbs up to one hydrogen atom per carbon atom. Nanostructured carbonaceous and metallic materials offer a large potential for hydrogen storage and must therefore be investigated in more detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Iijima, S., Nature 354 (1991) p. 56.CrossRefGoogle Scholar
2.Hamada, N., Sawada, S., and Oshiyama, A., Phys. Rev. Lett. 68 (1992) p. 54.CrossRefGoogle Scholar
3.Dresselhaus, M.S., Dresselhaus, G., and Eklund, P., Science of Fullerenes and Carbon Nanotubes (Academic Press, New York, 1996).Google Scholar
4.Darkrim, F. and Levesque, D., J. Chem. Phys. 109 (1998) p. 4981.CrossRefGoogle Scholar
5.Ding, R.G., Lu, G.Q., Yan, Z.F., and Wilson, M.A., J. Nanosci. Nanotechnol. 1 (2001) p. 7.CrossRefGoogle Scholar
6.Monthioux, M., Smith, B.W., Burteaux, B., Claye, A., Fischer, J.E., and Luzzi, D.E., Carbon 39 (2001) p. 1251.CrossRefGoogle Scholar
7.Nakamizo, M., Honda, H., and Inagaki, M., Carbon 16 (1978) p. 281;CrossRefGoogle Scholar
Nikiel, L. and Jagodzinski, P.W., Carbon 31 (1993) p. 1313.CrossRefGoogle Scholar
8.Niwase, K., Tanaka, T., Kakimoto, Y., Ishihara, K.N., and Shingu, P.H., Mater. Trans., JIM 36 (1995) p. 282.CrossRefGoogle Scholar
9.Shen, T.D., Ge, W.Q., Wang, K.Y., Quan, M.X., Wang, J.T., Wei, W.D., and Koch, C.C., Nanostruct. Mater. 7 (1996) p. 393.CrossRefGoogle Scholar
10.Tang, J., Zhao, W., Li, L., Falster, A.U., Simmons, W.B. Jr, Zhou, W.L., Ikuhara, Y., and Zhang, J.H., J. Mater. Res. 11 (1996) p. 733.CrossRefGoogle Scholar
11.Fukunaga, T., Nagano, K., Mizutani, U., Wakayama, H., and Fukushima, Y., J. Non-Cryst. Solids 232–234 (1998) p. 416.CrossRefGoogle Scholar
12.Salver-Disma, F., Tarascon, J.M., Clinard, C., and Rouzaud, J.N., Carbon 37 (1999) p. 1941.CrossRefGoogle Scholar
13.Huang, J.Y., Acta Mater. 47 (1999) p. 1801.CrossRefGoogle Scholar
14.Huang, J.Y., Yasuda, H., and Mori, H., Chem. Phys. Lett. 303 (1999) p. 130.CrossRefGoogle Scholar
15.Chen, Y., Gerald, J.F., Chadderton, L.T., and Chaffron, L., Appl. Phys. Lett. 74 (1999) p. 2782.CrossRefGoogle Scholar
16.Ong, T.S. and Yang, H., Carbon 38 (2000) p. 2077.CrossRefGoogle Scholar
17.Chen, X.H., Yang, H.S., Wu, G.T., Wang, M., Deng, F.M., Zhang, X.B., Peng, J.C., and Li, W.Z., J. Cryst. Growth 218 (2000) p. 57.CrossRefGoogle Scholar
18.Orimo, S., Majer, G., Fukunaga, T., Züttel, A., Schlapbach, L., and Fujii, H., Appl. Phys. Lett. 75 (1999) p. 3093.CrossRefGoogle Scholar
19.Fukunaga, T., Itoh, K., Orimo, S., Aoki, M., and Fujii, H., J. Alloys Compd. 327 (2001) p. 224.CrossRefGoogle Scholar
20.Orimo, S., Matsushima, T., Fujii, H., Fukunaga, T., and Majer, G., J. Appl. Phys. 90 (2001) p. 1545.CrossRefGoogle Scholar
21.Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S., and Heben, M.J., Nature 386 (1997) p. 377.CrossRefGoogle Scholar
22.Hynek, S., Fuller, W., and Bentley, J., Int. J. Hydrogen Energy 22 (6) (1997) p. 601.CrossRefGoogle Scholar
23.Bénard, P. and Chahine, R., Int. J. Hydrogen Energy 26 (2001) p. 849.CrossRefGoogle Scholar
24.Dillon, A.C., Gennett, T., Alleman, J.L., Jones, K.M., Parilla, P.A., and Heben, M.J., in Proc. 2000 U.S. DOE/NREL Hydrogen Program Review, Vol. II, NREL/CP-570–28890 (National Renewable Energy Laboratory, Golden, CO, 2000).Google Scholar
25.Hirscher, M., Becher, M., Haluska, M., Dettlaff-Weglikowska, U., Quintel, A., Duesberg, G.S., Choi, Y.M., Downes, P., Hulman, M., Roth, S., Stepanek, I., and Bernier, P., Appl. Phys. A 72 (2001) p. 129.CrossRefGoogle Scholar
26.Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity (Academic Press, London, 1967).CrossRefGoogle Scholar
27.Stan, G. and Cole, M.W., J. Low Temp. Phys. 110 (1998) p. 539.CrossRefGoogle Scholar
28.Rzepka, M., Lamp, P., and de la Casa-Lillo, M.A., J. Phys. Chem. B 102 (1998) p. 10849.CrossRefGoogle Scholar
29.Williams, K.A. and Eklund, P.C., Chem. Phys. Lett. 320 (2000) p. 352.CrossRefGoogle Scholar
30.Lee, S.M., An, K.H., Lee, Y.H., Seifert, G., and Frauenheim, T., J. Korean Phys. Soc. 38 (2001) p. 686;Google Scholar
Lee, S.M. and Lee, Y.H., Appl. Phys. Lett. 76 (2000) p. 2879.Google Scholar
31.Ma, Y., Xia, Y., Zhao, M., Wang, R., and Mei, L., Phys. Rev. B 63 115422 (2001).Google Scholar
32.Leung, W.B., March, N.H., and Motz, H., Phys. Lett. 56 (1976) p. 425.CrossRefGoogle Scholar
33.Beebe, R.A., Biscoe, J., Smith, W.R., and Wendell, C.B., J. Am. Chem. Soc. 69 (1947) p. 95.CrossRefGoogle Scholar
34.Züttel, A., Sudan, P., Mauron, Ph., Kiyo-bayashi, T., Emmenegger, Ch., and Schlapbach, L., Int. J. Hydrogen Energy 27 (2002) p. 203.CrossRefGoogle Scholar
35.Ye, Y., Ahn, C.C., Witham, C., Fultz, B., Liu, J., Rinzler, A.G., Colbert, D., Smith, K.A., and Smalley, R.E., Appl. Phys. Lett. 74 (1999) p. 2307.CrossRefGoogle Scholar
36.Liu, C., Fan, Y.Y., Liu, M., Cong, H.T., Cheng, H.M., and Dresselhaus, M.S., Science 286 (1999) p. 1127.CrossRefGoogle Scholar
37.Fan, Y.Y., Liao, B., Liu, M., Wei, Y.L., Lu, M.Q., and Cheng, H.M., Carbon 37 (1999) p. 1649.CrossRefGoogle Scholar
38.Chen, P., Wu, X., Lin, J., and Tan, K.L., Science 285 (1999) p. 91.CrossRefGoogle Scholar
39.Hirscher, M., Becher, M., Haluska, M., Quintel, A., Skakalova, V., Choi, Y.M., Dettlaff-Weglikowska, U., Roth, S., Stepanek, I., Bernier, P., Leonhardt, A., and Fink, J., J. Alloys Compd. 330–332 (2002) p. 654.CrossRefGoogle Scholar
40.Ströbel, R., Jörissen, L., Schliermann, T., Trapp, V., Schütz, W., Bohmhammel, K., Wolf, G., and Garche, J., J. Power Sources 84 (1999) p. 221.CrossRefGoogle Scholar
41.Nijkamp, M.G., Raaymakers, J.E.M.J., van Dillen, A.J., and de Jong, K.P., Appl. Phys. A 72 (2001) p. 619.CrossRefGoogle Scholar
42.Nützenadel, Ch., Züttel, A., and Schlapbach, L., in Science and Technology of Molecular Nanostruc-tures, Chapter 9, edited by Kuzmany, H., Fink, J., Mehring, M., and Roth, S. (American Institute of Physics, New York, 1999) p. 462.Google Scholar
43.Nützenadel, Ch., Züttel, A., Emmenegger, Ch., Sudan, P., and Schlapbach, L., in Science and Applications of Nanotubes, Chapter 10, Fundamental Materials Research Series, edited by Thorpe, M.F. (Kluwer Academic/Plenum Publishers, New York, 2000) p. 205.Google Scholar
44.Züttel, A., Sudan, P., Mauron, Ph., Emmenegger, Ch., Kiyobayashi, T., and Schlapbach, L., J. Metastable Nanocryst. Mater. 11 (2001) p. 95.Google Scholar
45.Lee, S.M., Park, K.S., Choi, Y.C., Park, Y.S., Bok, J.M., Bae, D.J., Nahm, K.S., Choi, Y.G., Yu, S.Ch., Kim, N., Frauenheim, T., and Lee, Y.H., Synth. Met. 113 (2000) p. 209.CrossRefGoogle Scholar
46.Jeloaica, L. and Sidis, V., Chem. Phys. Lett. 300 (1999) p. 157.CrossRefGoogle Scholar
47.Tada, K., Furuya, S., and Watanabe, K., Phys. Rev. B 63 155405 (2001).CrossRefGoogle Scholar
48.Enoki, T., Miyajima, S., Sano, M., and Inokuchi, H., J. Mater. Res. 5 (1990) p. 435.CrossRefGoogle Scholar
49.Brosha, E.L., Davey, J., Garzon, F.H., and Gottesfeld, S., J. Mater. Res. 14 (1999) p. 2138.CrossRefGoogle Scholar
50.Loutfy, R.O. and Wexler, E.M., in Proc. 2001 DOE Hydrogen Program Review, NREL/CP-570–30535 (National Renewable Energy Laboratory, Golden, CO, 2001).Google Scholar
51.Pekker, S., Salvetat, J.-P., Jakab, E., Bonard, J.-M., and Forro, L., J. Phys. Chem. B 105 (2001) p. 7938.CrossRefGoogle Scholar
52.Cracknell, R.F., Phys. Chem. Chem. Phys. 3 (2001) p. 2091.CrossRefGoogle Scholar
53.Miyajima, S., Kabasawa, M., Chiba, T., Enoki, T., Maruyama, Y., and Inokuchi, H., Phys. Rev. Lett. 64 (1990) p. 319.CrossRefGoogle Scholar
54.Ashcroft, N.W., Phys. Rev. Lett. 21 (1968) p. 1748.CrossRefGoogle Scholar
55.Schneider, T., Helv. Phys. Acta 42 (1969) p. 957.Google Scholar
56.Caron, L.G., Phys. Rev. B 9 (1974) p. 5025.CrossRefGoogle Scholar
57.Papaconstantopoulos, D.A., Boyer, L.L., Klein, B.M., Williams, A.R., Morruzzi, V.L., and Janak, J.F., Phys. Rev. B 15 (1977) p. 4221.CrossRefGoogle Scholar
58.Overhauser, A.W., Phys. Rev. B 35 (1987) p. 411.CrossRefGoogle Scholar
59.Press, M.R., Rao, B.K., and Jena, P., Phys. Rev. B 38 (1988) p. 2380.CrossRefGoogle Scholar
60.Yu, R. and Lam, P.K., Phys. Rev. B 38 (1988) p. 3576.CrossRefGoogle Scholar
61.Martins, J.L., Phys. Rev. B 38 (1988) p. 12776.CrossRefGoogle Scholar
62.Seel, M., Kunz, A.B., and Hill, S., Phys. Rev. B 39 (1989) p. 7949.CrossRefGoogle Scholar
63.Mütschele, T. and Kirchheim, R., Scripta Metall. 21 (1987) p. 135.CrossRefGoogle Scholar
64.Mütschele, T. and Kirchheim, R., Scripta Metall. 21 (1987) p. 1101.CrossRefGoogle Scholar
65.Kirchheim, R., Mütschele, T., Kieninger, W., Gleiter, H., Birringer, R., and Koblé, T.D., Mater. Sci. Eng. 99 (1988) p. 457.CrossRefGoogle Scholar
66.Zaluska, A., Zaluski, L., and Ström-Olsen, J.O., J. Alloys Compd. 288 (1999) p. 217.CrossRefGoogle Scholar
67.Zaluska, A., Zaluski, L., and Ström-Olsen, J.O., Appl. Phys. A 72 (2001) p. 157.CrossRefGoogle Scholar
68.Liang, G., Huot, J., Boily, S., Neste, A.V., and Schulz, R., J. Alloys Compd. 291 (1999) p. 295.CrossRefGoogle Scholar
69.Liang, G., Huot, J., Boily, S., and Schulz, R., J. Alloys Compd. 305 (2000) p. 239.CrossRefGoogle Scholar
70.Huot, J., Liang, G., and Schulz, R., Appl. Phys. A 72 (2001) p. 187.CrossRefGoogle Scholar
71.Orimo, S. and Fujii, H., Appl. Phys. A 72 (2001) p. 167.CrossRefGoogle Scholar
72.Iwakura, C., Nohara, S., Inoue, H., and Fukumoto, Y., Chem. Commun. (15) (1996) p. 1831.CrossRefGoogle Scholar
73.Nohara, S., Inoue, H., Fukumoto, Y., and Iwakura, C., J. Alloys Compd. 252 (1997) p. L16.CrossRefGoogle Scholar
74.Iwakura, C., Inoue, H., Zhang, S.G., Nohara, S., Yorimitsu, K., Kuramoto, N., and Morikawa, T., J. Electrochem. Soc. 146 (1999) p. 1659.CrossRefGoogle Scholar
75.Iwakura, C., Inoue, H., Zhang, S.G., and Nohara, S., J. Alloys Compd. 293–295 (1999) p. 653.CrossRefGoogle Scholar
76.Imamura, H., Sakasai, N., and Kajii, Y., J. Alloys Compd. 232 (1996) p. 218.CrossRefGoogle Scholar
77.Imamura, H., Sakasai, N., and Fujinaga, T., J. Alloys Compd. 253–254 (1997) p. 34.CrossRefGoogle Scholar
78.Imamura, H., Takesue, Y., Akimoto, T., and Tabata, S., J. Alloys Compd. 293–295 (1999) p. 564.CrossRefGoogle Scholar
79.Imamura, H., Tabata, S., Takesue, Y., Sakata, Y., and Kamazaki, S., Int. J. Hydrogen Energy 25 (2000) p. 837.CrossRefGoogle Scholar