Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T11:39:43.724Z Has data issue: false hasContentIssue false

Functional Amphiphiles for Gene Delivery

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The design of safe and efficient gene transfer vectors remains one of the key challenges in gene therapy. Despite their remarkable transfection efficiency, viral vectors suffer from known safety issues. Consequently, significant research activity has been undertaken to develop nonviral approaches to gene transfer during the last decade. Numerous academic and industrial research groups are investigating synthetic cationic vectors, such as cationic amphiphiles, with the objective of increasing the gene transfection activity. Within this area, the development of functional synthetic vectors that respond to local environmental effects have met with success. These synthetic vectors are based on mechanistic principles and represent a significant departure from earlier systems. Many of these systems for gene delivery in vitro and in vivo are discussed in this article.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Weiss, R. and Neldso, D., “Teen Dies Undergoing Gene Therapy,” The Washington Post, Sept. 29, 1999Google Scholar
2.Felgner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., Northrop, J.P., Ringold, G.M., and Danielsen, M., Proc. Natl. Acad. Sci. USA 84 (1987) p. 7413CrossRefGoogle Scholar
3.Godbey, W.T. and Mikos, A.G., J. Controlled Release 72 (2001) p. 115CrossRefGoogle Scholar
4.Felgner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., Northrop, J.P., Gao, X., and Huang, L.. Gene Ther. 2 (1995) p. 710Google Scholar
5.Rolland, A.P., Crit. Rev. Ther. Drug Carrier Syst. 15 (1998) p. 143CrossRefGoogle Scholar
6.Legendre, J.Y. and Szoka, F.C., J. Pharm. Res. 9 (1992) p. 1235CrossRefGoogle Scholar
7.Miller, A.D., Angew. Chem. Int. Ed. 37 (1998) p. 17683.0.CO;2-4>CrossRefGoogle Scholar
8.Felgner, P.L. and Rhodes, G., Nature 349 (1991) p. 351; J. Remy, C. Sirlin, P. Vierling, and J.P. Behr, Bioconjugate Chem. 5 (1994) p. 647; N. Zhu, D. Liggott, Y. Liu, and R. Debs, Science 261 (1993) p. 209; H.M. Deshmukh and L. Huang, New J. Chem. 21 (1997) p. 113; J.P. Behr, B. Demeneix, J.P. Loeffler, and J. Perez-Mutul, Proc. Nat. Acad. Sci. USA 86 (1989) p. 6982; Y. Rui, S. Wang, P.S. Low, and D.H. Thompson, J. Am. Chem. Soc. 120 (1998) p. 11213; U. Schulze, H. Schmidt, and C.R. Safinya, Bioconjugate Chem. 10 (1999) p. 548; J.P. Vigneron, N. Oudrhiri, M. Fauquet, L. Vergely, J.C. Bradley, M. Basseville, P. Lehn, J.M. Lehn, and J.P. Vigneron, Proc. Nat. Acad. Sci. USA 93 (1996) p. 9682; R.C. MacDonald, G.W. Ashley, M.M. Shida, V.A. Rakhmanova, Y.S. Tarahovsky, D.P. Pantazatos, M.T. Kennedy, E.V. Pozharski, K.A. Baker, R.D. Jones, H.S. Rosenzweig, K.L. Choi, R. Qiu, and T.J. McIntosh, Biophys. J. 77 (5) (1999) p. 2612CrossRefGoogle Scholar
9.Leventis, R., Silvius, J.R., Biochim. Biophys. Acta 1023 (1990) p. 124CrossRefGoogle Scholar
10.Gao, X. and Huang, L., Biochem. Biophys. Res. Commun. 179 (1991) p. 280CrossRefGoogle Scholar
11.Rose, J.K., Buonocore, L., and Whitt, M.A., BioTechniques 10 (1991) p. 520Google Scholar
12.Solodin, I., Brown, C.S., Bruno, M.S., Chow, C.Y., Jang, E.H., Debs, R.J., and Heath, T.D., Biochemistry 34 (1995) p. 13537CrossRefGoogle Scholar
13.Boulanger, C., Giorgio, C. Di, Gaucheron, J., and Vierling, P., Bioconjugate Chem. 15 (2004) p. 901 and references thereinCrossRefGoogle Scholar
14.Choi, J.S., Joo, D.K., Kim, C.H., Kim, K., and Park, J.S., J. Am. Chem. Soc. 122 (2000) p. 474; M.X. Tang, C.T. Redemann, and F.C. Szoka, Bioconjugate Chem. 7 (1996) p. 703; J.F. Kukowska-Latallo, A.U. Bielinska, J. Johnson, R. Spindler, D.A. Tomalia, and J.R. Baker Jr., Proc. Nat. Acad. Sci. USA 93 (1996) p. 4897; D. Luo, K. Haverstick, N. Belcheva, E. Han, and W.M. Saltzman, Macromol. 35 (2002) p. 3456CrossRefGoogle Scholar
15.Hoffman, A.S., Stayton, P.S., Press, O., Murthy, N., Lackey, C.A., Cheung, C., Black, F., Campbell, J., Fausto, N., Kyriakides, T.R., and Bornstein, P., Polym. Adv. Technol. 13 (2002) p. 992Google Scholar
16.Barthel, F., Remy, J.S., Loeffler, J.P., and Behr, J.P., DNA Cell Biol. 12 (1993) p. 553CrossRefGoogle Scholar
17.Ronsin, G., Perrin, C., Guédat, P., Kremer, A., Camilleri, P., and Kirby, A.J., Chem. Commun. 21 (2001) p. 2234CrossRefGoogle Scholar
18.Shi, F. and Hoekstra, D., J. Controlled Release 97 (2) (2004) p. 189CrossRefGoogle Scholar
19.Sørensen, D.R., Leirdal, M., and Sioud, M., J. Mol. Biol. 327 (2003) p. 761; M.T. McManus, B.B. Haines, C.P. Dillon, C.E. Whitehurst, L. van Parijs, J. Chen, and P.A. Sharp, J. Immunol. 169 (2002) p. 5754Google Scholar
20.Pires, P., Simoes, S., Nir, S., Gaspar, R., Duzgunes, N., and Pedroso de Lima, M.C., Biochim. Biophys. Acta 1418 (1999) p. 71; J. Zabner, A.J. Fasbender, T. Moninger, K.A. Poellinger, and M.J. Welsh, J. Biol. Chem. 270 (1995) p. 18997; Y. Xu and F.C. Szoka Jr., Biochemistry 35 (1996) p. 5616; D.S. Friend, D. Papahadjopoulos, and R.J. Debs, Biochim. Biophys. Acta 1278 (1996) p. 41Google Scholar
21.Simoes, S., Slepushkin, V., Gaspar, R., Pedroso de Lima, M.C., and Duzgunes, N., Gene Ther. 6 (1999) p. 1798CrossRefGoogle Scholar
22.Mukherjee, S., Ghosh, R.N., and Maxfield, F.R., Physiol. Rev. 77 (1997) p. 759CrossRefGoogle Scholar
23.Miller, A.D., Angew. Chem. Int. Ed. 37 (1998) p. 17683.0.CO;2-4>CrossRefGoogle Scholar
24.Wrobel, I. and Collins, D., Biochim. Biophys. Acta 1235 (1995) p. 296CrossRefGoogle Scholar
25.Bally, M.B., Harvie, P., Wong, F.M.P., Kong, S., Wasan, E.K., and Reimer, D.L., Adv. Drug Deliv. Rev. 38 (1999) p. 291; P.W. Cheng, Hum. Gene Ther. 7 (1996) p. 275; T. Girao, S. Simoes, P. Pires, S. Nir, and M.C. Pedroso de Lima, Biochim. Biophys. Acta 1510 (2001) p. 136CrossRefGoogle Scholar
26.Xu, Y. and Szoka, F.C. Jr., Biochemistry 35 (1996) p. 5616CrossRefGoogle Scholar
27.Page, R.L., Butler, S.P., Subramanian, A., Gwazdauskas, F.C., Johnson, J.L., and Velander, W.H., Transgenic Res. 4 (1995) p. 353Google Scholar
28.Brunner, S., Sauer, T., Carotta, S., Cotten, M., Saltik, M., and Wagner, E., Gene Ther. 7 (2000) p. 401; I. Mortimer, P. Tam, I. MacLachlan, R.W. Graham, E.G. Saravolac, and P.B. Joshi, Gene Ther. 6 (1999) p. 403; M. Wilke, E. Fortunati, M. Van den Broek, A.T. Hoogeveen, and B.J. Scholte, Gene Ther. 3 (1996) p. 1133Google Scholar
29.Talcott, B. and Moore, M.S., Trends Cell Biology 9 (1999) p. 312CrossRefGoogle Scholar
30.Lechardeur, D., Verkman, A.S., and Lukacs, G.L., Adv. Drug Deliv. Rev. 57 (2005) p. 755Google Scholar
31.Schmidt-Wolf, G.D. and Schmidt-Wolf, I.G.H., Trends in Molecular Medicine 9 (2) (2003) p. 67Google Scholar
32.Brazeau, G.A., Attia, S., Poxon, S., and Hughes, J.A., Pharm. Res. 15 (1998) p. 680; P.R. Dash, M.L. Read, L.B. Barret, M.A. Wolfert, and L.W. Seymour, Gene Ther. 6 (1999) p. 643Google Scholar
33.Pedroso de Lima, M.C., Simoes, S., Pires, P., Faneca, H., and Duzgunes, N., Adv. Drug Deliv. Rev. 47 (2001) p. 277Google Scholar
34.Martin, B., Sainlos, M., Aissaoui, A., Oudrhiri, N., Hauchecorne, M., Vigneron, J.P., Lehn, J.M., and Lehn, P., Curr. Pharm. Des. 11 (3) (2005) p. 375CrossRefGoogle Scholar
35.Gijsens, A., Derycke, A., Missiaen, L., De Vos, D., Huwyler, J., Eberle, A., and de Witte, P., Int. J. Cancer 101 (2002) p. 78; E. Bohl Kullberg, N. Bergstrand, J. Carlsson, K. Edwards, M. Johnsson, S. Sjöberg, and L. Gedda, Bioconjugate Chem. 13 (2002) p. 737; H.E. Hofland, C. Masson, S. Iginla, I. Osetinsky, J.A. Reddy, C.P. Leamon, D. Scherman, M. Bessodes, and P. Wils, Mol. Ther. 5 (2002) p. 739Google Scholar
36.Reddy, J.A., Abburi, C., Hofland, H., Howard, S.J., Vlahov, I., Wils, P., Leamon, C.P., Gene Ther. 9 (2002) p. 1542CrossRefGoogle Scholar
37.Thurston, G., McLean, J.W., Rizen, M., Baluk, P., Haskell, A., Murphy, T.J., Hanahan, D., and McDonald, D.M., J. Clin. Invest. 101 (1998) p. 1401CrossRefGoogle Scholar
38.Kunsfeld, R., Wickenhauser, G., Michaelis, U., Teifel, M., Umek, W., Naujoks, K., Wolff, K., and Petzelbauer, P., J. Invest. Dermatol. 120 (2003) p. 476; A. Papyan, A.M. Werner, I. Ischenko, M. Yezhelyev, M. Teifel, U. Michaelis, and C.J. Bruns, Proc. Amer. Assoc. Cancer Res. 45 (2004) p. 4104; H. Haas, B. Schulze, A. Werner, U. Michaelis, B. Sauer, and M. Teifel, Proc. Amer. Assoc. Cancer Res. 44 (2003) p. 1793Google Scholar
39.Murata, M., Sugahara, Y., Takahashi, S., and Ohnishi, S., J. Biochem. 102 (1987) p. 957CrossRefGoogle Scholar
40.Plank, C., Oberhauser, B., Mechtler, K., Koch, C., and Wagner, E., J. Biol. Chem. 269 (1994) p. 12918Google Scholar
41.Pichon, C., Freulon, I., Midoux, P., Mayer, R., Monsigny, M., and Roche, A.-C., Antisense Nucleic Acid Drug Dev. 7 (1997) p. 335CrossRefGoogle Scholar
42.Noguchi, A., Furuno, T., Kawaura, C., and Nakanishi, M., FEBS Lett. 433 (1998) p. 169Google Scholar
43.Harvie, P., Wong, F.M.P., and Bally, M.B., Biophys. J. 75 (1998) p. 1040Google Scholar
44.Mukherjee, S., Ghosh, R.N., and Maxfield, F.R., Physiol. Rev. 77 (1997) p. 759CrossRefGoogle Scholar
45.Boomer, J.A., Thompson, D.H., and Sullivan, S.M., Pharm. Res. 19 (2002) p. 1292; J. Zhu, R.J. Munn, and M.H. Nantz, J. Am. Chem. Soc. 122 (2000) p. 2645; A. Aissaoui, B. Martin, E. Kan, N. Oudrhiri, M. Hauchecorne, J.-P. Vigneron, J.-M. Lehn, and P. Lehn, J. Med. Chem. 47 (2004) p. 5210; D. Luton, N. Oudrhiri, P. de Lagausie, A. Aissaoui, M. Hauchecorne, S. Julia, J.F. Ouru, Y. Aigrain, M. Peuchmaur, J.P. Vigneron, J.M. Lehn, and P. Lehn, J. Gene Med. 6 (2004) p. 328; T.G. Kim, S.Y. Kang, J.H. Kang, M.Y. Cho, J.I. Kim, S.H. Kim, and J.S. Kim, Bioconjugate Chem. 15 (2004) p. 326; R.J. Cristiano and D.T. Curiel, Cancer Gene Ther. 3 (1996) p. 49; Q. Leng and A.J. Mixson, Nucleic Acids Res. 33 (4) (2005) p. 40; D. Putnam, A.N. Zelikin, V.A. Izumrudov, and R. Langer, Biomaterials 24 (2003) p. 4425; T.G. Kim, S.Y. Kang, J.H. Kang, M.Y. Cho, J.I. Kim, S.H. Kim, and J.S. Kim, Bioconjugate Chem. 15 (2) (2004) p. 326; V.V. Kumar, C. Pichon, M. Refregiers, B. Guerin, P. Midoux, and A. Chaudhuri, Gene Ther. 10 (2003) p.1206CrossRefGoogle Scholar
46.Wenjin, G., Gosselin, M.A., and Lee, R.J., J. Controlled Release 83 (2002) p. 121; S. Simões, J.N. Moreira, C. Fonseca, N. Düzgüne, and M.C. Pedroso de Lima, Adv. Drug Del. Rev. 56 (2004) p. 947; R.A. Jones, C.Y. Cheung, F.E. Black, J.K. Zia, P.S. Stayton, A.S. Hoffman, M.R. Wilson, Biochem. J. 372 (2003) p. 65; P.S. Stayton, A.S. Hoffman, N. Murthy, C. Lackey, C. Cheung, P. Tan, L.A. Klumb, A. Chilkoti, F.S. Wilbur, and O.W. Press, J. Controlled Release 65 (2000) p. 203; J. Zhu, R.J. Munn, and M.H. Nantz, J. Am. Chem. Soc. 122 (2000) p. 2645Google Scholar
47.Byk, G., Wetzer, B., Frederic, M., Dubertret, C., Pitard, B., Jaslin, G., and Scherman, D., J. Med. Chem. 43 (2000) p. 4377; M. Balakirev, G. Schoehn, and J. Chroboczek, Chem. Bio. 7 (10) 2000 p. 813; R.C. Carlisle, T. Etrych, S.S. Briggs, J.A. Preece, K. Ulbrich, and L.W. Seymour, J. Gene Med. 6 (2004) p. 337Google Scholar
48.Wetzer, B., Byk, G., Frederic, M., Airiau, M., Blanche, F., Pitard, B., and Scherman, D., Biochemical J. 356 (2001) p. 747CrossRefGoogle Scholar
49.McGregor, C., Perrin, C., Monck, M., Camilleri, P., and Kirby, A.J., J. Am. Chem. Soc. 123 (2001) p. 6215; F. Tang and J.A. Hughes, Biochem. Biophys. Res. Commun. 242 (1998) p. 141; G. Byk, B. Wetzer, M. Frederic, C. Dubertret, B. Pitard, G. Jaslin, and D. Scherman, J. Med. Chem. 43 (2000) p. 4377CrossRefGoogle Scholar
50.Lleres, D., Clamme, J.P., Dauty, E., Blessing, T., Krishnamoorthy, G., Duportail, G., and Mely, Y., Langmuir 18 (2002) p. 10340CrossRefGoogle Scholar
51.Mély, Y., Llères, D., Clamme, J.P., Dauty, E., Krishnamoorthy, G., and Duportail, G., presented at DNASupramolecular Assemblies Workshop, Avignon, France, May 56, 2004Google Scholar
52.Behr, J.P., Demeneix, B., Loeffler, J.P., and Perez-Mutul, J., Proc. Natl. Acad. Sci. USA 86 (1989) p. 6982Google Scholar
53.Schwartz, B., Benoist, C., Abdallah, B., Scherman, D., Behr, J.P., and Demeneix, B.A.. Hum. Gene Ther. 6 (1995) p. 1515CrossRefGoogle Scholar
54.Lin, J., Slack, N.L., Ahmad, A., George, C.X., Safinya, C.C.R., and Samuel, C.E., Biophys. J. 84 (2003) p. 3307CrossRefGoogle Scholar
55.Zabner, J., Fasbender, A.J., Moninger, T., Poellinger, K.A., and Welsh, M.J.. J. Biol. Chem. 270 (1995) p. 18997CrossRefGoogle Scholar
56.Prata, C.A.H., Zhao, Y., Barthélémy, P., Li, Y., Luo, D., McIntosh, J.T., Lee, S.J., and Grinstaff, M.W., J. Am. Chem. Soc. 126 (2004) p. 12196CrossRefGoogle Scholar
57.Prata, C.A.H., Zhao, Y., Barthélémy, P., Li, Y., Luo, D., McIntosh, T.J., Lee, S.J., and Grinstaff, M.W., presented at DNA Supramolecular Assemblies Workshop, Avignon, France, May 56, 2004Google Scholar
58.Barthélémy, P., Prata, C.A.H., Filocamo, S.F., Immoos, C.E., Maynor, B.W., Lee, S.J., and Grinstaff, M.W., Chem. Commun. 14 (10) (2005) p. 1261CrossRefGoogle Scholar
59.Campins, N., Moreau, L., Grinstaff, M.W., and Barthélémy, P., presented at DNA Supramolecular Assemblies Workshop, Avignon, France, May 56, 2004Google Scholar
60.Chabaud, P., Camplo, M., Payet, D., Serin, G., Moreau, L., Barthélémy, P., and Grinstaff, M.W., Bioconjugate Chem. (2005) submitted; L. Moreau, P. Barthélémy, Y. Li, D. Luo, C.A.H. Prata, and M.W. Grinstaff, Mol. BioSystems (2005) DOI:10. 1039/b503302kGoogle Scholar
61.Moreau, L., Barthélémy, P., Maataoui, M. El, and Grinstaff, M.W.. J. Am. Chem. Soc. 126 (2004) p. 7533Google Scholar
62.Moreau, L., Grinstaff, M.W., and Barthélémy, P.. Tetrahedron Lett. 46 (2005) p. 1593CrossRefGoogle Scholar
63.Regelin, A.E., Fernholz, E., Krug, H.F., and Massing, U., J. Biomol. Screen. 6 (4) (2001) p. 245CrossRefGoogle Scholar
64.Armknecht, S., Boutros, M., Kiger, A., Nybakken, K., Mathey-Prevot, B., and Perrimon, N., Methods Enzymol. 392 (2005) p. 55CrossRefGoogle Scholar