Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T11:51:41.319Z Has data issue: false hasContentIssue false

Fracture, fatigue, and creep of nanotwinned metals

Published online by Cambridge University Press:  06 April 2016

Xiaoyan Li
Affiliation:
Centre for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, China; xiaoyanlithu@tsinghua.edu.cn
Ming Dao
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, USA; mingdao@mit.edu
Christoph Eberl
Affiliation:
Laboratory for Micro- and Materials Mechanics, Institute for Microsystems Technology, University of Freiburg, and Fraunhofer Institute for Mechanics of Materials, Germany; chris.eberl@imtek.de and chris.eberl@iwm.fraunhofer.de
Andrea Maria Hodge
Affiliation:
Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, USA; ahodge@usc.edu
Huajian Gao
Affiliation:
School of Engineering, Brown University, USA; huajian_gao@brown.edu
Get access

Abstract

As a relatively new class of hierarchically structured materials, nanotwinned (NT) metals exhibit an exceptional combination of high strength, good ductility, large fracture toughness, remarkable fatigue resistance, and creep stability. This article reviews current studies on fracture, fatigue, and creep of NT metals, with an emphasis on the fundamental deformation and failure mechanisms. We focus on the complex interactions among cracks, dislocations, and twin boundaries, the influence of microstructure, twin size, and twinning/detwinning on damage evolution, and the contribution of nanoscale twins to fatigue and creep under indentation and irradiation conditions. The article also includes critical discussions on the effects of twin thickness and grain size on the fracture toughness, fatigue resistance, and creep stability of NT metals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lu, L., Shen, Y., Chen, X., Qian, L., Lu, K., Science 304, 422 (2004).Google Scholar
Lu, L., Chen, X., Huang, X., Lu, K., Science 323, 607 (2009).CrossRefGoogle Scholar
Lu, K., Lu, L., Suresh, S., Science 324, 349 (2009).Google Scholar
Anderoglu, O., Misra, A., Wang, H., Ronning, F., Hundley, M.F., Zhang, X., Appl. Phys. Lett. 93, 083108 (2008).Google Scholar
Bufford, D., Wang, H., Zhang, X., Acta Mater. 59, 93 (2011).Google Scholar
Hodge, A.M., Wang, Y.M., Barbee, T.W. Jr., Scr. Mater. 59, 163 (2008).CrossRefGoogle Scholar
Idrissi, H., Wang, B., Colla, M.S., Raskin, J.P., Schryvers, D., Pardoen, T., Adv. Mater. 23, 2119 (2011).Google Scholar
Jang, D., Cai, C., Greer, J.R., Nano Lett. 11, 1743 (2011).Google Scholar
Jang, D., Li, X., Gao, H., Greer, J.R., Nat. Nanotechnol. 12, 4605 (2012).Google Scholar
Qin, E.W., Lu, L., Tao, N.R., Tan, J., Lu, K., Acta Mater. 57, 6215 (2009).Google Scholar
Qin, E.W., Lu, L., Tao, N.R., Lu, K., Scr. Mater. 60, 539 (2009).CrossRefGoogle Scholar
Singh, A., Tang, L., Dao, M., Lu, L., Suresh, S., Acta Mater. 59, 2437 (2011).Google Scholar
Shute, C.J., Myer, B.D., Xie, S., Li, S.Y., Barbee, T.W., Hodge, A.M., Weertman, J.R., Acta Mater. 59, 4569 (2011).Google Scholar
Bezares, J., Jiao, S., Liu, Y., Bufford, D., Lu, L., Zhang, X., Kulkarni, Y., Asaro, R.J., Acta Mater. 60, 4623 (2012).CrossRefGoogle Scholar
Kou, H., Lu, J., Li, Y., Adv. Mater. 26, 5518 (2014).Google Scholar
Wei, Y., Li, Y., Zhu, L., Liu, Y., Lei, X., Wang, G., Wu, Y., Mi, Z., Liu, J., Wang, H., Gao, H., Nat. Commun. 5, 3580 (2014).CrossRefGoogle Scholar
Beyerlein, I.J., Zhang, X., Misra, A., Annu. Rev. Mater. Res. 44, 329 (2014).CrossRefGoogle Scholar
Mahajan, S., Scr. Mater. 68, 95 (2013).Google Scholar
Asaro, R.J., Suresh, S., Acta Mater. 53, 3369 (2005).Google Scholar
Dao, M., Lu, L., Shen, Y.F., Suresh, S., Acta Mater. 54, 5421 (2006).Google Scholar
Zhu, T., Li, J., Samanta, A., Kim, H.G., Suresh, S., Proc. Natl. Acad. Sci. U.S.A. 104, 3031 (2007).CrossRefGoogle Scholar
Li, X., Wei, Y., Lu, L., Lu, K., Gao, H., Nature 464, 877 (2010).CrossRefGoogle Scholar
Stukowski, A., Albe, K., Farkas, D., Phys. Rev. B Condens. Matter 82, 224103 (2010).Google Scholar
Kulkarni, Y., Asaro, R.J., Acta Mater. 57, 4835 (2009).Google Scholar
Zhang, Y., Huang, H., Nanoscale Res. Lett. 4, 34 (2009).CrossRefGoogle Scholar
Deng, C., Sansoz, F., Nano Lett. 9, 1517 (2009).Google Scholar
Zhu, L., Ruan, H., Li, X., Dao, M., Gao, H., Lu, J., Acta Mater. 59, 5544 (2011).Google Scholar
You, Z., Li, X., Gui, L., Lu, Q., Zhu, T., Gao, H., Lu, L., Acta Mater. 61, 5217 (2013).Google Scholar
Yuan, F., Wu, X., J. Appl. Phys. 113, 203516 (2013).CrossRefGoogle Scholar
Yuan, F., Cheng, P., Wu, X., Philos. Mag. Lett. 94, 514 (2014).Google Scholar
Zhou, H., Li, X., Qu, S., Yang, W., Gao, H., Nano Lett. 14, 5075 (2014).Google Scholar
Gu, P., Dao, M., Suresh, S., Acta Mater. 67, 409 (2014).CrossRefGoogle Scholar
Lu, N., Du, K., Lu, L., Ye, H.Q., Nat. Commun. 6, 7648 (2015).Google Scholar
Zhu, T., Gao, H.J., Scr. Mater. 66, 843 (2012).CrossRefGoogle Scholar
Li, X., Gao, H., Nano and Cell Mechanics: Fundamentals and Frontiers, Espinosa, H., Bao, G., Eds. (Wiley, Chichester, 2013), p. 129.Google Scholar
Cheng, Y., Jin, Z.H., Zhang, Y.W., Gao, H., Acta Mater. 58, 2293 (2010).Google Scholar
Seita, M., Hanson, J.P., Gradecak, S., Demkowicz, M.J., Nat. Commun. 6, 6164 (2015).Google Scholar
Kim, S., Li, X., Gao, H., Kumar, S., Acta Mater. 60, 2959 (2012).Google Scholar
Shan, Z., Lu, L., Minor, A.M., Stach, E.A., Mao, S.X., JOM 60, 71 (2008).Google Scholar
Zeng, Z., Li, X., Lu, L., Zhu, T., Acta Mater. 98, 313 (2015).Google Scholar
Kobler, A., Hodge, A.M., Hahn, H., Kübel, C., Appl. Phys. Lett. 106, 261902 (2015).Google Scholar
Wang, J., Sansoz, F., Huang, J., Liu, Y., Sun, S., Zhang, Z., Mao, S.X., Nat. Commun. 4, 1742 (2013).Google Scholar
Yuan, F.P., Wu, X.L., Philos. Mag. 93, 3248 (2013).Google Scholar
Li, J., Ni, Y., Soh, A.K., Wu, X.L., Mater. Res. Lett. 3, 190 (2015).Google Scholar
Liu, L., Wang, J., Gong, S.K., Mao, S.X., Sci. Rep. 4, 4397 (2014).Google Scholar
Zhou, H., Gao, H., J. Appl. Mech. 82, 071015 (2015).Google Scholar
Yoo, B.G., Bolesb, S.T., Liu, Y., Zhang, X., Schwaiger, R., Eberl, C., Kraft, O., Acta Mater. 81, 184 (2014).Google Scholar
Zhou, X., Li, X., Chen, C., Acta Mater. 99, 77 (2015).Google Scholar
Chowdhury, P.B., Sehitoglu, H., Rateick, R.G., Int. J. Fatigue 68, 277 (2014).Google Scholar
Chowdhury, P.B., Sehitoglu, H., Rateick, R.G., Int. J. Fatigue 68, 292 (2014).CrossRefGoogle Scholar
Qu, S., Zhang, P., Wu, S.D., Zang, Q.S., Zhang, Z.F., Scr. Mater. 59, 1131 (2008).Google Scholar
Li, L.L., Zhang, Z.J., Zhang, P., Wang, Z.G., Zhang, Z.F., Nat. Commun. 5, 3536 (2014).Google Scholar
Stein, C.A., Cerrone, A., Ozturka, T., Lee, S., Kenesei, P., Tucker, H., Pokharel, R., Lind, J., Hefferan, C., Suter, R.M., Ingraffea, A.R., Rollett, A.D., Curr. Opin. Solid State Mater. Sci. 18, 244 (2014).Google Scholar
Zhang, K., Weertman, J.R., Eastman, J.A., Appl. Phys. Lett. 85, 5197 (2004).Google Scholar
Jiao, S., Kulkarni, Y., Comput. Mater. Sci. 110, 254 (2015).Google Scholar
Chen, Y., Yu, K.Y., Liu, Y., Shao, S., Wang, H., Kirk, M.A., Wang, J., Zhang, X., Nat. Commun. 6, 7036 (2015).Google Scholar