Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T03:06:31.187Z Has data issue: false hasContentIssue false

Epitaxial graphene on silicon carbide: Introduction to structured graphene

Published online by Cambridge University Press:  23 November 2012

Ming Ruan
Affiliation:
Georgia Institute of Technology; ruan@gatech.edu
Yike Hu
Affiliation:
Georgia Institute of Technology; yhu9@mail.gatech.edu
Zelei Guo
Affiliation:
Georgia Institute of Technology; zguo34@gatech.edu
Rui Dong
Affiliation:
Georgia Institute of Technology; rui.dong@physics.gatech.edu
James Palmer
Affiliation:
Georgia Institute of Technology; jimbopalmer@gatech.edu
John Hankinson
Affiliation:
Georgia Institute of Technology; jhankinson@gatech.edu
Claire Berger
Affiliation:
Georgia Institute of Technology, USA, and CNRS/Institut Néel, France; claire.berger@physics.gatech.edu
Walt A. de Heer
Affiliation:
Georgia Institute of Technology; walter.deheer@physics.gatech.edu
Get access

Abstract

We present an introduction to the rapidly growing field of epitaxial graphene on silicon carbide, tracing its development from the original proof-of-concept experiments a decade ago to its present, highly evolved state. The potential of epitaxial graphene as a new electronic material is now being recognized. Whether the ultimate promise of graphene-based electronics will ever be realized remains an open question. Silicon electronics is based on single-crystal substrates that allow reliable patterning on the nanoscale, which is an absolute requirement for any new electronic material. That is why epitaxial graphene is based on single-crystal silicon carbide. We also present recent results on nanopatterned graphene produced by etching the silicon carbide before annealing so that the graphene structures are produced in their final shapes. This avoids postannealing patterning, which is known to greatly affect transport properties on the nanoscale. Creating such structured graphene is an elegant method for avoiding pervasive patterning problems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chung, D.D.L., J. Mater. Sci. 37, 1475 (2002).CrossRefGoogle Scholar
Fitzer, E., Manocha, L.M., Carbon Reinforcements and Carbon/Carbon Composites (Springer, Berlin, 1998).CrossRefGoogle Scholar
Thostenson, E.T., Ren, Z., Chou, T.-W., Compos. Sci. Technol. 61, 1899 (2001).CrossRefGoogle Scholar
Pauling, L.C., The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry (Cornell University Press, Ithaca, NY, 1948).Google Scholar
Boehm, H.P., Clauss, A., Fischer, G.O., Hofmann, U., Z. Naturforsch. B: Chem. Sci. B17, 150 (1962).CrossRefGoogle Scholar
Allen, M.J., Tung, V.C., Kaner, R.B., Chem. Rev. 110, 132 (2009).CrossRefGoogle Scholar
Katsnelson, M.I., Mater. Today 10, 20 (2007).CrossRefGoogle Scholar
Wallace, P.R., Phys. Rev. 71, 622 (1947).CrossRefGoogle Scholar
Berger, C., Song, Z.M., Li, T.B., Li, X.B., Ogbazghi, A.Y., Feng, R., Dai, Z.T., Marchenkov, A.N., ConradE,H. E,H., First, P.N., de Heer, W.A., J. Phys. Chem. B 108, 19912 (2004).CrossRefGoogle Scholar
Hu, Y.K., Ruan, M., Guo, Z.L., Dong, R., Palmer, J., Hankinson, J., Berger, C., de Heer, W.A., J. Phys. D: Appl. Phys. 45, 154010 (2012).CrossRefGoogle Scholar
Kim, K., Choi, J.Y., Kim, T., Cho, S.H., Chung, H.J., Nature 479, 338 (2011).CrossRefGoogle Scholar
Sprinkle, M., Ruan, M., Hu, Y., Hankinson, J., Rubio-Roy, M., Zhang, B., Wu, X., Berger, C., de Heer, W.A., Nat. Nanotechnol. 5, 727 (2010).CrossRefGoogle Scholar
de Heer, W.A., Berger, C., Wu, X., First, P.N., Conrad, E.H., Li, X., Li, T., Sprinkle, M., Hass, J., Sadowski, M.L., Potemski, M., Martinez, G., Solid State Commun. 143, 92 (2007).CrossRefGoogle Scholar
Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.S., Phys. Rev. B 54, 17954 (1996).CrossRefGoogle Scholar
White, C.T., Mintmire, J.W., J. Phys. Chem. B 109, 52 (2005).CrossRefGoogle Scholar
Bachtold, A., Hadley, P., Nakanishi, T., Dekker, C., Science 294, 1317 (2001).CrossRefGoogle Scholar
de Heer, W.A., Berger, C., Ruan, M., Sprinkle, M., Li, X., Hu, Y., Zhang, B., Hankinson, J., Conrad, E.H., Proc. Natl. Acad. Sci. U.S.A. 108, 16900 (2011).CrossRefGoogle Scholar
First, P.N., de Heer, W.A., Seyller, T., Berger, C., Stroscio, J.A., Moon, J.-S., MRS Bull. 35, 296 (2010).CrossRefGoogle Scholar
Kedzierski, J., Hsu, P.-L., Healey, P., Wyatt, P.W., Keast, C.L., Sprinkle, M., Berger, C., de Heer, W.A., IEEE Trans. Electron Devices 55, 2078 (2008).CrossRefGoogle Scholar
Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Rohrl, J., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B., Seyller, T., Nat. Mater. 8, 203 (2009).CrossRefGoogle Scholar
Hass, J., Feng, R., Li, T., Li, X., Zong, Z., de Heer, W.A., First, P.N., Conrad, E.H., Jeffrey, C.A., Berger, C., Appl. Phys. Lett. 89, 143106 (2006).CrossRefGoogle Scholar
Niyogi, S., Bekyarova, E., Hong, J., Khizroev, S., Berger, C., de Heer, W.A., Haddon, R.C., J. Phys. Chem. Lett. 2, 2487 (2011).CrossRefGoogle Scholar
Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A.A., Starke, U., Phys. Rev. Lett. 103, 246804 (2009).CrossRefGoogle Scholar
Seyller, T., Bostwick, A., Emtsev, K.V., Horn, K., Ley, L., McChesney, J.L., Ohta, T., Riley, J.D., Rotenberg, E., Speck, F., Phys. Status Solidi B 245, 1436 (2008).CrossRefGoogle Scholar
Forbeaux, I., Themlin, J.M., Debever, J.M., Phys. Rev. B 58, 16396 (1998).CrossRefGoogle Scholar
Van Bommel, A.J., Crombeen, J.E., Van Tooren, A., Surf. Sci. 48, 463 (1975).CrossRefGoogle Scholar
de Heer, W.A., MRS Bull. 36, 632 (2011).CrossRefGoogle Scholar
Sprinkle, M., Soukiassian, P., de Heer, W.A., Berger, C., Conrad, E.H., Phys. Status Solidi RRL 3, A91 (2009).CrossRefGoogle Scholar
Emtsev, K.V., Speck, F., Seyller, T., Ley, L., Riley, J.D., Phys. Rev. B 77, 155303 (2008).CrossRefGoogle Scholar
Lauffer, P., Emtsev, K.V., Graupner, R., Seyller, T., Ley, L., Reshanov, S.A., Weber, H.B., Phys. Rev. B 77, 155426 (2008).CrossRefGoogle Scholar
Varchon, F., Feng, R., Hass, J., Li, X., Ngoc Nguyen, B., Naud, C., Mallet, P., Veuillen, J.-Y., Berger, C., Conrad, E.H., Magaud, L., Phys. Rev. Lett. 99, 126805 (2007).CrossRefGoogle Scholar
Berger, C., Song, Z.M., Li, X.B., Wu, X.S., Brown, N., Naud, C., Mayou, D., Li, T.B., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A., Science 312, 1191 (2006).CrossRefGoogle Scholar
Hass, J., de Heer, W.A., Conrad, E.H., J. Phys.: Condens. Matter 20, 323202 (2008).Google Scholar
Sprinkle, M., Siegel, D., Hu, Y., Hicks, J., Tejeda, A., Taleb-Ibrahimi, A., Le Fevre, P., Bertran, F., Vizzini, S., Enriquez, H., Chiang, S., Soukiassian, P., Berger, C., de Heer, W.A., Lanzara, A., Conrad, E.H., Phys. Rev. Lett. 103, 226803 (2009).CrossRefGoogle Scholar
Hicks, J., Sprinkle, M., Shepperd, K., Wang, F., Tejeda, A., Taleb-Ibrahimi, A., Bertran, F., Le Fèvre, P., de Heer, W.A., Berger, C., Conrad, E.H., Phys. Rev. B 83, 205403 (2011).CrossRefGoogle Scholar
Orlita, M., Faugeras, C., Plochocka, P., Neugebauer, P., Martinez, G., Maude, D.K., Barra, A.L., Sprinkle, M., Berger, C., de Heer, W.A., Potemski, M., Phys. Rev. Lett. 101, 267601 (2008).CrossRefGoogle Scholar
Sadowski, M.L., Martinez, G., Potemski, M., Berger, C., de Heer, W.A., Phys. Rev. Lett. 97, 266405 (2006).CrossRefGoogle Scholar
Faugeras, C., Nerriere, A., Potemski, M., Mahmood, A., Dujardin, E., Berger, C., de Heer, W.A., Appl. Phys. Lett. 92, 011914 (2008).CrossRefGoogle Scholar
Sun, D., Divin, C., Rioux, J., Sipe, J.E., Berger, C., de Heer, W.A., First, P.N., Norris, T.B., Nano Lett. 10, 1293 (2010).CrossRefGoogle Scholar
Sun, D., Divin, C., Berger, C., de Heer, W.A., First, P.N., Norris, T.B., Phys. Rev. Lett. 104, 136802 (2010).CrossRefGoogle Scholar
Sun, D., Wu, Z.-K., Divin, C., Li, X.B., Berger, C., de Heer, W.A., First, P.N., Norris, T.B., Phys. Rev. Lett. 101, 157402 (2008).CrossRefGoogle Scholar
Winnerl, S., Orlita, M., Plochocka, P., Kossacki, P., Potemski, M., Winzer, T., Malic, E., Knorr, A., Sprinkle, M., Berger, C., de Heer, W.A., Schneider, H., Helm, M., Phys. Rev. Lett. 107, 237401 (2011).CrossRefGoogle Scholar
Miller, D.L., Kubista, K.D., Rutter, G.M., Ruan, M., de Heer, W.A., First, P.N., Stroscio, J.A., Science 324, 924 (2009).CrossRefGoogle ScholarPubMed
Miller, D.L., Kubista, K.D., Rutter, G.M., Ruan, M., de Heer, W.A., Kindermann, M., First, P.N., Stroscio, J.A., Nat. Phys. 6, 811 (2010).CrossRefGoogle Scholar
Song, Y.J., Otte, A.F., Kuk, Y., Hu, Y.K., Torrance, D.B., First, P.N., de Heer, W.A., Min, H.K., Adam, S., Stiles, M.D., MacDonald, A.H., Stroscio, J.A., Nature 467, 185 (2010).CrossRefGoogle Scholar
Wu, X.S., Sprinkle, M., Li, X.B., Ming, F., Berger, C., de Heer, W.A., Phys. Rev. Lett. 101, 026801 (2008).CrossRefGoogle Scholar
Bekyarova, E., Itkis, M.E., Ramesh, P., Berger, C., Sprinkle, M., de Heer, W.A., Haddon, R.C., J. Am. Chem. Soc. 131, 1336 (2009).CrossRefGoogle Scholar
Wei, Z., Wang, D., Kim, S., Kim, S.Y., Hu, Y., Yakes, M.K., Laracuente, A.R., Dai, Z., Marder, S.R., Berger, C., King, W.P., de Heer, W.A., Sheehan, P.E., Riedo, E., Science 328, 1373 (2010).CrossRefGoogle Scholar
Kim, S., Zhou, S., Hu, Y.K., Acik, M., Chabal, Y.J., Berger, C., de Heer, W.A., Bongiorno, A., Riedo, E., Nat. Mater. 11, 544 (2012).CrossRefGoogle Scholar
Kodali, V.K., Scrimgeour, J., Kim, S., Hankinson, J.H., Carroll, K.M., de Heer, W.A., Berger, C., Curtis, J.E., Langmuir 27, 863 (2011).CrossRefGoogle Scholar
Zhang, Y.B., Tan, Y.W., Stormer, H.L., Kim, P., Nature 438, 201 (2005).CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A., Nature 438, 197 (2005).CrossRefGoogle Scholar
Wu, X.S., Hu, Y.K., Ruan, M., Madiomanana, N.K., Hankinson, J., Sprinkle, M., Berger, C., de Heer, W.A., Appl. Phys. Lett. 95, 223108 (2009).CrossRefGoogle Scholar
de Heer, W.A., Berger, C., Wu, X., Hu, Y., Ruan, M., Stroscio, J., First, P., Haddon, R., Piot, B., Faugeras, C., Potemski, M., J. Phys. D: Appl. Phys. 43, 374007 (2010).CrossRefGoogle Scholar
Moon, J.S., Curtis, D., Hu, M., Wong, D., McGuire, C., Campbell, P.M., Jernigan, G., Tedesco, J.L., VanMil, B., Myers-Ward, R., Eddy, C.J., Gaskill, D.K., IEEE Electron Device Lett. 30, 650 (2009).CrossRefGoogle Scholar
Lin, Y.-M., Valdes-Garcia, A., Han, S.-J., Farmer, D.B., Meric, I., Sun, Y.N., Wu, Y.Q., Dimitrakopoulos, C., Grill, A., Avouris, Ph., Jenkins, K.A., Science 332, 1294 (2011).CrossRefGoogle Scholar
Lin, Y.-M., Farmer, D.B., Jenkins, K.A., Wu, Y., Tedesco, J.L., Myers-Ward, R.L., Eddy, C.R. Jr., Gaskill, D.K., Dimitrakopoulos, C., Avouris, P., IEEE Electron Device Lett. 32, 1343 (2011).CrossRefGoogle Scholar
Krithivasan, R., Lu, Y., Cressler, J.D., Rieh, J.S., Khater, M.H., Ahlgren, D., Freeman, G., IEEE Electron Device Lett. 27, 567 (2006).CrossRefGoogle Scholar
Nienhaus, H., Kampen, T.U., Monch, W., Surf. Sci. 324, L328 (1995).CrossRefGoogle Scholar
Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M., Science 294, 1488 (2001).CrossRefGoogle Scholar
Dlubak, B., Martin, M.-B., Deranlot, C., Servet, B., Xavier, S., Mattana, R., Sprinkle, M., Berger, C., de Heer, W.A., Petroff, F., Anane, A., Seneor, P., Fert, A., Nat. Phys. 8, 557 (2012).CrossRefGoogle Scholar
Han, M.Y., Özyilmaz, B., Zhang, Y., Kim, P., Phys. Rev. Lett. 98, 206805 (2007).CrossRefGoogle Scholar
Oostinga, J.B., Sacepe, B., Craciun, M.F., Morpurgo, A.F., Phys. Rev. B 81, 193408 (2010).CrossRefGoogle Scholar
Rubio-Roy, M., Zaman, F., Hu, Y.K., Berger, C., Moseley, M.W., Meindl, J.D., de Heer, W.A., Appl. Phys. Lett. 96, 082112 (2010).CrossRefGoogle Scholar
Hicks, J., Shepperd, K., Wang, F., Conrad, E.H., J. Phys. D: Appl. Phys. 45, 154002 (2012).CrossRefGoogle Scholar
Powell, J.A., Neudeck, P.G., Trunek, A.J., Beheim, G.M., Matus, L.G., Hoffman, R.W., Keys, L.J., Appl. Phys. Lett. 77, 1449 (2000).CrossRefGoogle Scholar
Norimatsu, W., Kusunoki, M., Physica E 42, 691 (2010).CrossRefGoogle Scholar
Özyilmaz, B., Jarillo-Herrero, P., Efetov, D., Kim, P., Appl. Phys. Lett. 91, 192107 (2007).CrossRefGoogle Scholar
Son, Y.-W., Cohen, M.L., Louie, S.G., Phys. Rev. Lett. 97, 216803 (2006).CrossRefGoogle Scholar
Hassan, R., J. Phys.: Condens. Matter 23, 382203 (2011).Google Scholar