Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Varley, Joel B
and
Schleife, André
2015.
Bethe–Salpeter calculation of optical-absorption spectra of In2O3and Ga2O3.
Semiconductor Science and Technology,
Vol. 30,
Issue. 2,
p.
024010.
Babicheva, Viktoriia E.
Boltasseva, Alexandra
and
Lavrinenko, Andrei V.
2015.
Transparent conducting oxides for electro-optical plasmonic modulators.
Nanophotonics,
Vol. 4,
Issue. 1,
p.
165.
Toudert, Johann
Serna, Rosalía
López-Conesa, Lluís
Rebled, José Manuel
Peiró, Francesca
Estradé, Sònia
and
Calvo Barrío, Lorenzo
2015.
Rare Earth-Ion/Nanosilicon Ultrathin Layer: A Versatile Nanohybrid Light-Emitting Building Block for Active Optical Metamaterials.
The Journal of Physical Chemistry C,
Vol. 119,
Issue. 21,
p.
11800.
Khalilzadeh-Rezaie, Farnood
Oladeji, Isaiah O.
Cleary, Justin W.
Nader, Nima
Nath, Janardan
Rezadad, Imen
and
Peale, Robert E.
2015.
Fluorine-doped tin oxides for mid-infrared plasmonics.
Optical Materials Express,
Vol. 5,
Issue. 10,
p.
2184.
Huck, Alexander
and
Andersen, Ulrik L.
2016.
Coupling single emitters to quantum plasmonic circuits.
Nanophotonics,
Vol. 5,
Issue. 3,
p.
483.
Khurgin, J. B.
2016.
Replacing metals with alternative plasmonic substances in plasmonics and metamaterials: Is it a good idea?.
p.
169.
Panah, M. E. Aryaee
Takayama, O.
Morozov, S. V.
Kudryavtsev, K. E.
Semenova, E. S.
and
Lavrinenko, A. V.
2016.
Highly doped InP as a low loss plasmonic material for mid-IR region.
Optics Express,
Vol. 24,
Issue. 25,
p.
29077.
Aryaee Panah, M.E.
Ottaviano, L.
Semenova, E.S.
and
Lavrinenko, A.V.
2016.
Surface plasmons on highly doped InP.
p.
28.
Zhu, Shaoli
Xiao, Linda
and
Cortie, M.B.
2016.
Surface enhanced Raman spectroscopy on metal nitride thin films.
Vibrational Spectroscopy,
Vol. 85,
Issue. ,
p.
146.
Takayama, O
Bogdanov, A A
and
Lavrinenko, A V
2017.
Photonic surface waves on metamaterial interfaces.
Journal of Physics: Condensed Matter,
Vol. 29,
Issue. 46,
p.
463001.
Zhang, Pu
Xie, Xuejiang
and
Chen, Xue-Wen
2017.
Guided surface-volume plasmon modes in an ultrathin film at Drude damping limit.
Optics Letters,
Vol. 42,
Issue. 17,
p.
3295.
Metaxa, C.
Kassavetis, S.
Pierson, J.F.
Gall, D.
and
Patsalas, P.
2017.
Infrared Plasmonics with Conductive Ternary Nitrides.
ACS Applied Materials & Interfaces,
Vol. 9,
Issue. 12,
p.
10825.
Shkondin, E.
Repän, T.
Takayama, O.
and
Lavrinenko, A. V.
2017.
High aspect ratio titanium nitride trench structures as plasmonic biosensor.
Optical Materials Express,
Vol. 7,
Issue. 11,
p.
4171.
Khurgin, Jacob B.
2017.
Replacing noble metals with alternative materials in plasmonics and metamaterials: how good an idea?.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
Vol. 375,
Issue. 2090,
p.
20160068.
Wells, Matthew P.
Zou, Bin
Doiron, Brock G.
Kilmurray, Rebecca
Mihai, Andrei P.
Oulton, Rupert F. M.
Gubeljak, Patrick
Ormandy, Kristian L.
Mallia, Giuseppe
Harrison, Nicholas M.
Cohen, Lesley F.
Maier, Stefan A.
Alford, Neil McN.
and
Petrov, Peter K.
2017.
Tunable, Low Optical Loss Strontium Molybdate Thin Films for Plasmonic Applications.
Advanced Optical Materials,
Vol. 5,
Issue. 22,
Shkondin, E.
Takayama, O.
Panah, M. E. Aryaee
Liu, P.
Larsen, P. V.
Mar, M. D.
Jensen, F.
and
Lavrinenko, A. V.
2017.
Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials.
Optical Materials Express,
Vol. 7,
Issue. 5,
p.
1606.
Panah, M. E. Aryaee
Han, L.
Norrman, K.
Pryds, N.
Nadtochiy, A.
Zhukov, A.E.
Lavrinenko, A. V.
and
Semenova, E. S.
2017.
Mid-IR optical properties of silicon doped InP.
Optical Materials Express,
Vol. 7,
Issue. 7,
p.
2260.
Kim, Kwang‐Hyon
2018.
Epsilon‐Negative Active Composites: Loss‐Free and Amplifying Plasmonic Materials.
physica status solidi (b),
Vol. 255,
Issue. 3,
Khurgin, Jacob B.
2018.
Relative merits of phononics vs. plasmonics: the energy balance approach.
Nanophotonics,
Vol. 7,
Issue. 1,
p.
305.
Salary, Mohammad Mahdi
and
Mosallaei, Hossein
2018.
Tunable magnetization of infrared epsilon-near-zero media via field-effect modulation.
Applied Physics Letters,
Vol. 112,
Issue. 18,