Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T00:29:20.220Z Has data issue: false hasContentIssue false

Electrical energy storage: Materials challenges and prospects

Published online by Cambridge University Press:  02 August 2016

Arumugam Manthiram*
Affiliation:
Department of Mechanical Engineering, The University of Texas at Austin, USA; manth@austin.utexas.edu
Get access

Abstract

Rapid increases in global energy use and growing environmental concerns have prompted the development of clean and sustainable alternative energy technologies. Electrical energy storage (EES) is critical for efficiently utilizing electricity produced from intermittent, renewable sources such as solar and wind, as well as for electrifying the transportation sector. Rechargeable batteries are prime candidates for EES, but widespread adoption requires optimization of cost, cycle life, safety, energy density, power density, and environmental impact, all of which are directly linked to severe materials challenges. This article presents a brief overview of the electrode materials currently used in lithium-ion batteries, followed by the challenges and prospects of next-generation insertion-reaction electrodes and conversion-reaction electrodes with a Li+ working ion. Finally, we discuss future directions involving solid electrolytes, multi-electron transfer hosts, and other working ions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Goodenough, J.B., Manthiram, A., MRS Commun. 4, 135 (2014).CrossRefGoogle Scholar
Manthiram, A., J. Phys. Chem. Lett. 2, 176 (2011).Google Scholar
Basu, S., US Patent 4,423,125 (1983).Google Scholar
Ferg, E., Gummoow, R.J., de Kock, A., Thackeray, M.M., J. Electrochem. Soc 141, L147 (1994).Google Scholar
Mizushima, K., Jones, P.C., Wiseman, P.J., Goodenough, J.B., Mater. Res. Bull. 15, 783 (1980).CrossRefGoogle Scholar
Yoshino, A., US Patent 4,688,595 (1985).Google Scholar
Yoshino, A., Japanese Patent 1989293 (1985).Google Scholar
Venkatraman, S., Shin, Y., Manthiram, A., Electrochem. Solid-State Lett. 6, A9 (2003).Google Scholar
Ohzuku, T., Makimura, Y., Chem. Lett. 30, 642 (2001).Google Scholar
Lu, Z., Beaulieu, L.Y., Donaberger, R.A., Thomas, C.L., Dahn, J.R., J. Electrochem. Soc. 149, A778 (2002).Google Scholar
Armstrong, A.R., Kang, S.-H., Holzapfel, M., Nova, P., Thackeray, M.M., Bruce, P.G., J. Am. Chem. Soc. 128, 8694 (2006).CrossRefGoogle Scholar
Lee, E.-S., Manthiram, A., J. Mater. Chem. A 2, 3932 (2014).CrossRefGoogle Scholar
Sun, Y.K., Chen, Z.H., Noh, H.J., Lee, D.J., Jung, H.G., Ren, Y., Wang, S., Yoon, C.S., Myung, S.T., Amine, K., Nat. Mater. 11, 942 (2012).Google Scholar
Thackeray, M.M., David, W.I.F., Bruce, P.G., Goodenough, J.B., Mater. Res. Bull. 18, 461 (1983).Google Scholar
Manthiram, A., Chemelewski, K., Lee, E.-S., Energy Environ. Sci. 7, 1339 (2014).CrossRefGoogle Scholar
Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B., J. Electrochem. Soc. 144, 1188 (1997).Google Scholar
Manthiram, A., Vadivel Murugan, A., Sarkar, A., Muraliganth, T., Energy Environ. Sci. 1, 621 (2008).Google Scholar
Nitta, N., Yushin, G., Part. Part. Syst. Charact. 31, 317 (2014).Google Scholar
Obrovac, M.N., Chevrier, V.L., Chem. Rev. 114, 11444 (2014).Google Scholar
Kim, Y., Ha, K.-H., Oh, S.M., Lee, K.T., Chem. Eur. J. 20, 11980 (2014).CrossRefGoogle Scholar
Yoon, S., Manthiram, A., Chem. Mater. 21, 3898 (2009).CrossRefGoogle Scholar
Allcorn, E., Manthiram, A., J. Mater. Chem. A 3, 3891 (2015).CrossRefGoogle Scholar
Zhao, Y., Manthiram, A., Chem. Mater. 27, 3096 (2015).Google Scholar
Kim, S.O., Manthiram, A., Chem. Commun. 52, 4337 (2016).CrossRefGoogle Scholar
Kim, I.-T., Allcorn, E., Manthiram, A., Phys. Chem. Chem. Phys. 16, 12884 (2014).Google Scholar
Manthiram, A., Fu, Y.-Z., Su, Y.-S., Acc. Chem. Res. 46, 1125 (2013).Google Scholar
Manthiram, A., Fu, Y.-Z., Chung, S.-H., Zu, C., Su, Y.-S., Chem. Rev. 114, 11751 (2014).Google Scholar
Manthiram, A., Chung, S.-H., Zu, C., Adv. Mater. 27, 1980 (2015).CrossRefGoogle Scholar
Su, Y.-S., Manthiram, A., Nat. Commun. 3, 1166 (2012).Google Scholar
Su, Y.-S., Fu, Y.-Z., Cochell, T., Manthiram, A., Nat. Commun. 4, 2985 (2013).CrossRefGoogle Scholar
Chung, S.-H., Manthiram, A., Adv. Mater. 26, 7352 (2014).Google Scholar
Zu, C., Manthiram, A., J. Phys. Chem. Lett. 5, 2522 (2014).Google Scholar
Abraham, K.M., Jiang, Z., J. Electrochem. Soc. 143, 1 (1996).Google Scholar
Bruce, P.G., Freunberger, S.A., Hardwick, L.J., Tarascon, J.-M., Nat. Mater. 11, 19 (2012).Google Scholar
Visco, S.J., Nimon, Y.S., Katz, B.D., US Patent 7,282,296 B2 (2007).Google Scholar
Li, L., Cai, S.-H., Dai, S., Manthiram, A., Energy Environ. Sci. 7, 2630 (2014).Google Scholar
Manthiram, A., Li, L., Adv. Energy Mater. 5, 1401302 (2015).Google Scholar
Li, L., Manthiram, A., Nano Energy 9, 94 (2014).Google Scholar
Li, L., Liu, C., He, G., Fan, D., Manthiram, A., Energy Environ. Sci. 8, 3274 (2015).Google Scholar
Maiyalagan, T., Chemelewski, K.R., Manthiram, A., ACS Catal. 4, 421 (2014).CrossRefGoogle Scholar
Maiyalagan, T., Jarvis, K.A., Therese, S., Ferreira, P.J., Manthiram, A., Nat. Commun. 5, 3949 (2014).Google Scholar
Quartarone, E., Mustarelli, P., Chem. Soc. Rev. 40, 2525 (2011).Google Scholar
Li, L., Manthiram, A., Adv. Energy Mater. 1502054, 1 (2015).Google Scholar
He, G., Bridges, C.A., Manthiram, A., Chem. Mater. 27, 6699 (2015).Google Scholar
Manthiram, A., Yu, X., Small 11, 2108 (2015).Google Scholar
Yu, X., Manthiram, A., Adv. Energy Mater. 5, 1500350 (2015).Google Scholar
Knight, J.C., Therese, S., Manthiram, A., ACS Appl. Mater. Interfaces 7, 22953 (2015).Google Scholar
Knight, J.C., Therese, S., Manthiram, A., J. Mater. Chem. A 3, 21077 (2015).Google Scholar