Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T02:44:37.400Z Has data issue: false hasContentIssue false

Developments in Polymer Electrolytes for Lithium Batteries

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Recent developments in polymer electrolyte materials for lithium batteries are reviewed in this article. Four general classifications are recognized: (1) solvent-containing systems in which a liquid electrolyte solution either is fully miscible with a single-phase swollen polymer matrix (gel) or is a two-phase system in which “free” liquid occupies micropores within a swollen polymer network (hybrid), and conductivity (≥∼1 mS cm-1 at ambient temperature) is essentially independent of the polymer segmental motion (the thermal motion of segments of atoms along the backbone of a flexible polymer chain); (2) solvent-free, ion-coupled systems (typically polyether–Li salt complexes) in which both anions and cations are mobile within an amorphous, rubbery phase (conductivity ≤0.1 mS cm-1 at ambient temperature); (3) “single-ion” systems with anions fixed to the polymer backbone or systems with anion mobilities reduced by incorporation within larger molecules or by associations with the chain (conductivity ∼10-5 Scm-1 at ambient temperature); and (4) decoupled systems in which ionic mobility through channeled structures involves minimal local segmental displacements (conductivity 0.1–1 mS cm-1 at ambient temperature).

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Scrosati, B. and Vincent, C.A., MRS Bull. 25 (3) (2000) p. 28.CrossRefGoogle Scholar
2.Feullade, G. and Perche, P., J. Appl. Electrochem. 5 (1975) p. 63.CrossRefGoogle Scholar
3.Kezuka, K., Hatazawa, T., and Nakajima, K., J. Power Sources 97–98 (2001) p. 755.CrossRefGoogle Scholar
4.Tarascon, J.-M., Gozdz, A.S., Schmutz, C., Shokoohi, F., and Warren, P.C., Solid State Ionics 86–88 (1996) p. 49.CrossRefGoogle Scholar
5.Boudin, F., Andrieu, X., Jehoulet, C., and Olsen, I.I., J. Power Sources 81–82 (1999) p. 804.CrossRefGoogle Scholar
6.Stallworth, P.E., Fontanella, J.J., Wintersgill, M.C., Scheidler, C.D., Immel, J.J., Greenbaum, S.G., and Gozdz, A.S., J. Power Sources 81–82 (1999) p. 739.CrossRefGoogle Scholar
7.Huang, H. and Wunder, S.L., J. Power Sources 97–98 (2001) p. 649.CrossRefGoogle Scholar
8.Saito, Y., Kataoka, H., Sakai, T., and Deki, S., Electrochim. Acta 46 (2001) p. 1747.CrossRefGoogle Scholar
9.Magistris, A., Mustarelli, P., Parazzoli, F., Quartarone, E., Piaggio, P., and Bottino, A., J. Power Sources 97–98 (2001) p. 657.CrossRefGoogle Scholar
10.Svanberg, C., Bergman, R., Börjesson, L., and Jacobsson, P., Electrochim. Acta 46 (2001) p. 1447.CrossRefGoogle Scholar
11.Fenton, D.E., Parker, J.M., and Wright, P.V., Polymer 14 (1973) p. 589;CrossRefGoogle Scholar
Wright, P.V., Br. Polym. J. 7 (1975) p. 319.CrossRefGoogle Scholar
12.Ratner, M.A., Johansson, P., and Shriver, D.F., MRS Bull. 25 (3) (2000) p. 31.CrossRefGoogle Scholar
13.Armand, M.B., Chabagno, J.M., and Duclot, M.J., in Proc. Int. Conf. on Fast Ion Transport in Solids, Electrodes, and Electrolytes, edited by Vashishta, P., Mundy, J.N., and Shenoy, G.K. (North-Holland, New York, 1979) p. 131.Google Scholar
14.Appetecchi, G.B., Alessandrini, F., Carewska, M., Caruso, T., Prosini, P.P., Scaccia, S., and Passerini, S., J. Power Sources 97–98 (2001) p. 790.CrossRefGoogle Scholar
15.Armand, M., Gorecki, W., and Anréani, R., in Proc. 2nd Int. Symp. on Polymer Electrolytes, edited by Scrosati, B. (Elsevier, New York, 1990) p. 91.Google Scholar
16.Krawiec, W., Scanlon, L.G. Jr, Fellner, J.P., Vaia, R.A., Vasudevan, S., and Giannelis, E.P., J. Power Sources 54 (1995) p. 310.CrossRefGoogle Scholar
17.Wieczorek, W., Stevens, J.R., and Florjanczyk, Z., Solid State Ionics 85 (1996) p. 67.CrossRefGoogle Scholar
18.Croce, F., Appetecchi, G.B., Persi, L., and Scrosati, B., Nature 394 (1998) p. 456;CrossRefGoogle Scholar
Scrosati, B., Croce, F., and Panero, S., J. Power Sources 100 (2001) p. 93.CrossRefGoogle Scholar
19.Kumar, B., Scanlon, L.G., Marsh, R., Mason, R., Higgins, R., and Baldwin, R., Electrochim. Acta 46 (2001) p. 1515;CrossRefGoogle Scholar
Kumar, B. and Scanlon, L.G., J. Electroceram. 5 (2) (2000) p. 127.CrossRefGoogle Scholar
20.Morita, M., Fujisaki, T., Yoshimoto, N., and Ishikawa, M., Electrochim. Acta 46 (2001) p. 1565.CrossRefGoogle Scholar
21.Bloise, A.C., Tambelli, C.C., Franco, R.W.A., Donoso, J.P., Magon, C.J., Souza, M.F., Rosario, A.V., and Pereira, E.C., Electrochim. Acta 46 (2001) p. 1571.CrossRefGoogle Scholar
22.Sun, H.Y., Takeda, Y., Imanishi, N., Yamamoto, O., and Sohn, H.-J., J. Electrochem. Soc. 147 (2000) p. 2462.CrossRefGoogle Scholar
23.Li, Q., Takeda, Y., Imanishi, N., Yang, J., Sun, H.Y., and Yamamoto, O., J. Power Sources 97–98 (2001) p. 795.CrossRefGoogle Scholar
24.Yang, J., Takeda, Y., Li, Q., Imanishi, N., and Yamamoto, O., J. Power Sources 97–98 (2001) p. 779.CrossRefGoogle Scholar
25.Wieczorek, W., Florjanczyk, Z., and Stevens, J.R., Electrochim. Acta 40 (1995) p. 2251.CrossRefGoogle Scholar
26.Tanaka, R., Sakurai, M., Sekiguchi, H., Mori, H., Murayama, T., and Ooyama, T., Electrochim. Acta 46 (2001) p. 1709.CrossRefGoogle Scholar
27.Watanabe, M., Endo, T., Nishimoto, A., Miura, K., and Yanagida, M., J. Power Sources 81–82 (1999) p. 786.CrossRefGoogle Scholar
28.Matsui, S., Muranaga, T., Higobashi, H., Inoue, S., and Sakai, T., J. Power Sources 97–98 (2001) p. 772.CrossRefGoogle Scholar
29.Silva, R.A., Silva, G.G., Furtado, C.A., Moreira, R.L., and Pimenta, M.A., Electrochim. Acta 46 (2001) p. 1493.CrossRefGoogle Scholar
30.York, S., Kellam, E.C., Allcock, H.R., and Frech, R., Electrochim. Acta 46 (2001) p. 1553.CrossRefGoogle Scholar
31.Jannasch, P., Electrochim. Acta 46 (2001) p. 1646.CrossRefGoogle Scholar
32.Soo, P.P., Huang, B., Jang, Y.-I., Chiang, Y.-M., Sadoway, D.R., and Mayes, A.M., J. Electrochem. Soc. 146 (1999) p. 32.CrossRefGoogle Scholar
33.Ruzette, A.-V.G., Soo, P.P., Sadoway, D.R., and Mayes, A.M., J. Electrochem. Soc. 148 (2001) p. A537.CrossRefGoogle Scholar
34.Bruce, P.G., Hargreave, M.T., and Vincent, C.A., Solid State Ionics 53–56 (1992) p. 1087.CrossRefGoogle Scholar
35.Gorecki, W., Jeannin, M., Beloriszky, E., Roux, E., and Armand, M., J. Phys.: Condens. Matter 7 (1995) p. 6823.Google Scholar
36.Sadoway, D.R., Huang, B., Trapa, P.E., Soo, P.P., Bannerjee, P., and Mayes, A.M., J. Power Sources 97–98 (2001) p. 621.CrossRefGoogle Scholar
37.Travas-Sejdic, J., Steiner, R., Desilvestro, J., and Pickering, P., Electrochim. Acta 46 (2001) p. 1461.CrossRefGoogle Scholar
38.Watanabe, M., Tokuda, H., and Muto, S., Electrochim. Acta 46 (2001) p. 1487.CrossRefGoogle Scholar
39.Watanabe, M., Suzuki, Y., and Nishimoto, A., Electrochim. Acta 45 (2000) p. 1187.CrossRefGoogle Scholar
40.Zhang, S., Chang, Z., Xu, K., and Angell, C.A., Electrochim. Acta 45 (2000) p. 1229.CrossRefGoogle Scholar
41.Sun, X. and Angell, C.A., Electrochim. Acta 46 (2001) p. 1467.CrossRefGoogle Scholar
42.Mehta, M.A., Fujinami, T., and Inoue, T., J. Power Sources 81–82 (1999) p. 724;CrossRefGoogle Scholar
Mehta, M.A., Fujinami, T., Inoue, S., Matsushita, K., Miwa, T., and Inoue, T., Electrochim. Acta 45 (2000) p. 1175.CrossRefGoogle Scholar
43.Xu, W., Williams, M.D., and Angell, C.A., Chem. Mater. 14 (2002) p. 401.CrossRefGoogle Scholar
44.Angell, C.A., Liu, C., and Sanchez, E., Nature 362 (1993) p. 137.CrossRefGoogle Scholar
45.MacFarlane, D.R. and Forsyth, M., Adv. Mater. 13 (2001) p. 957;3.0.CO;2-#>CrossRefGoogle Scholar
MacFarlane, D.R., Huang, J., and Forsyth, M., Nature 402 (1999) p. 792.CrossRefGoogle Scholar
46.Yoshizawa, M. and Ohno, H., Electrochim. Acta 46 (2001) p. 1723;CrossRefGoogle Scholar
Tominaga, Y., Takizawa, N., and Ohno, H., Electrochim. Acta 45 (2000) p. 1285.CrossRefGoogle Scholar
47.McLin, M.G. and Angell, C.A., Solid State Ionics 53–56 (1992) p. 1027.CrossRefGoogle Scholar
48.Gadjourova, Z., Andreev, Y.G., Tunstall, D.P., and Bruce, P.G., Nature 412 (2001) p. 520.CrossRefGoogle Scholar
49.Golodnitsky, D., Livshits, E., Ulus, A., Barkay, Z., Lapides, I., Peled, E., Chung, S.H., and Greenbaum, S., J. Phys. Chem. A 105 (2001) p. 10098;CrossRefGoogle Scholar
Golodnitsky, D. and Peled, E., Electrochim. Acta 45 (2000) p. 1431.CrossRefGoogle Scholar
50.Johansson, P., Tegenfeldt, J., and Lingren, J., Polymer 42 (2001) p. 6573.CrossRefGoogle Scholar
51.Dias, F.B., Voss, J.P., Batty, S.V., Wright, P.V., and Ungar, G., Macromol. Rapid Commun. 15 (1994) p. 961;CrossRefGoogle Scholar
Dias, F.B., Batty, S.V., Ungar, G., Voss, J.P., and Wright, P.V., J. Chem. Soc., Faraday Trans. 92 (1996) p. 2599;Google Scholar
Wright, P.V., Zheng, Y., Bhatt, D., Richardson, T., and Ungar, G., Polym. Int. 47 (1998) p. 34.3.0.CO;2-G>CrossRefGoogle Scholar
52.Zheng, Y., Chia, F., Ungar, G., and Wright, P.V., Chem. Commun. (16) (2000) p. 1459.CrossRefGoogle Scholar
53.Zheng, Y., Chia, F., Ungar, G., and Wright, P.V., J. Power Sources 97–98 (2001) p. 641.CrossRefGoogle Scholar
54.Zheng, Y., Chia, F., Ungar, G., and P.V Wright, Electrochim. Acta 46 (2001) p. 1397.CrossRefGoogle Scholar
55.Chia, F., Zheng, Y., Liu, J., Ungar, G., and Wright, P.V., Solid State Ionics 147 (2002) p. 275.CrossRefGoogle Scholar
56.Chia, F., PhD thesis, University of Sheffield, U.K., 2002;Google Scholar
Wright, P.V., “Low-Dimensional Polymer Electrolytes with Block Copolymers,” EPSRC Report No. GR/M20792 (Engineering and Physical Sciences Research Council, Swin-don U.K. 2002);Google Scholar
Chia, F., Zheng, Y., Liu, J., Reeves, N., Ungar, G., and Wright, P.V., Electrochim. Acta (2002) submitted for publication.Google Scholar
57.Imrie, C.T., Ingram, M.D., and McHattie, G.S., Adv. Mater. 11 (1999) p. 832;3.0.CO;2-Z>CrossRefGoogle Scholar
Imrie, C.T. and Ingram, M.D., Mol. Cryst. Liq. Cryst. 347 (2000) p. 199.CrossRefGoogle Scholar