Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T04:14:51.582Z Has data issue: false hasContentIssue false

Computational Modeling and Simulation for Rechargeable Batteries

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Computational modeling is playing an increasingly important role in materials research and design. At the system level, the impact of cell design, electrode thickness, electrode morphology, new packaging techniques, and numerous other factors on battery performance can be predicted with battery simulators based on complex electrochemical transport equations. Such simulation tools have allowed the battery industry to optimize the power and energy density that can be achieved with a given set of electrode and electrolyte materials. At the materials level, first-principles calculations, which can be used to predict properties of previously unknown materials ab initio, have now made it possible to design materials for higher capacity and better stability. The state of the art in computational modeling of rechargeable batteries is reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ceder, G. and Van der Ven, A., Electrochim. Acta 45 (1999) p. 131.CrossRefGoogle Scholar
2.Aydinol, M.K., Kohan, A.F., Ceder, G., Cho, K., and Joannopoulos, J., Phys. Rev. B 56 (1997) p. 135.CrossRefGoogle Scholar
3. Results courtesy of Energizer Battery Company (www.energizer.com) and Computational Modeling Consultants Inc. (www.cmc-web.com).Google Scholar
4.Van der Ven, A. and Ceder, G., Phys. Rev. B 59 (1999) p. 742.CrossRefGoogle Scholar
5.Reed, J., Van der Ven, A., and Ceder, G., Electrochem. Solid-State Lett. 4 (2001) p. A78.CrossRefGoogle Scholar
6.Ammundsen, B. and Paulsen, J., Adv. Mater. 13 (2001) p. 943.3.0.CO;2-J>CrossRefGoogle Scholar
7.Lu, Z., MacNeil, D.D., and Dahn, J.R., Electrochem. Solid-State Lett. 4 (2001) p. A191.CrossRefGoogle Scholar
8.Ohzuku, T. and Makimura, Y., Chem. Lett. 8 (2001) p. 744.CrossRefGoogle Scholar
9.Van der Ven, A., Aydinol, M.K., Ceder, G., Kresse, G., and Hafner, J., Phys. Rev. B 58 (1998) p. 2975;CrossRefGoogle Scholar
Reimers, J.N. and Dahn, J.R., J. Electrochem. Soc. 139 (1992) p. 2091.CrossRefGoogle Scholar
10.Van der Ven, A. and Ceder, G., Electrochem. Solid-State Lett. 3 (2000) p. 301.CrossRefGoogle Scholar
11.Wang, H., Jang, Y.-I., Huang, B., Sadoway, D.R., and Chiang, Y.-M., J. Electrochem. Soc. 146 (1999) p. 473.CrossRefGoogle Scholar
12.Georges, A., Kotliar, G., Krauth, W., and Rozenberg, M.J., Rev. Mod. Phys. 68 (1996) p. 13.CrossRefGoogle Scholar
13.Newman, J. and Tiedemann, W., AIChE J. 21 (1975) p. 25.CrossRefGoogle Scholar
14.Doyle, M. and Newman, J., Electrochim. Acta 40 (1995) p. 2191.CrossRefGoogle Scholar
15.Botte, G.G., Subramanian, V.R., and White, R.E., Electrochim. Acta 45 (2000) p. 2595.CrossRefGoogle Scholar
16.Thomas, K.E., Newman, J., and Darling, R.M., in Advances in Lithium-Ion Batteries, edited by van Schalkwijk, W. and Scrosati, B. (Kluwer Academic/Plenum Publishers, New York, 2002) p. 345.CrossRefGoogle Scholar
17.Doyle, M., Meyers, J.P., and Newman, J., J. Electrochem. Soc. 147 (2000) p. 99.CrossRefGoogle Scholar
18.Desai, C.S. and Abel, J.F., Introduction to the Finite Element Method: A Numerical Method for Engineering Analysis (Van Nostrand Reinhold, New York, 1998).Google Scholar
19.Meyers, J.P., Doyle, M., Darling, R.M., and Newman, J., J. Electrochem. Soc. 147 (2000) p. 2930.CrossRefGoogle Scholar
20.Doyle, M. and Newman, J., in Tutorials in Electrochemical Engineering—Mathematical Modeling, edited by Savinell, R.F., Fenton, J.M., West, A.C., Scanlon, S.L., and Weidner, J. (The Electrochemical Society, Seattle, 1999) p. 144.Google Scholar
21.Newman, J., J. Electrochem. Soc. 142 (1995) p. 97.CrossRefGoogle Scholar
22.Fuller, T.F., Doyle, M., and Newman, J., J. Electrochem. Soc. 141 (1994) p. 1.CrossRefGoogle Scholar
23.Doyle, M. and Fuentes, Y., “Computer Simulations of a Li-Ion Polymer Battery and Implications for Higher Capacity Next-Generation Battery Designs,” J. Electrochem. Soc. (2002) submitted for publication.CrossRefGoogle Scholar