Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T15:17:57.999Z Has data issue: false hasContentIssue false

Composite epitaxial thin films: A new platform for tuning, probing, and exploiting mesoscale oxides

Published online by Cambridge University Press:  09 November 2015

J.L. MacManus-Driscoll
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, UK; jld35@cam.ac.uk
A. Suwardi
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, UK; as2334@cam.ac.uk
H. Wang
Affiliation:
Department of Electrical and Computer Engineering and Department of Materials Science and Engineering, Texas A&M University, USA; wangh@ece.tamu.edu
Get access

Abstract

Self-assembled epitaxial oxide composite films represent a new material form in which very high-quality mesoscopic structures can be created. The main focus has been on coupled electronic devices, but so far, only a very narrow range of compositions and structure types have been explored. Insufficient attention has been paid to the very wide window of possible materials combinations or to the novel materials properties that could be induced. Both of these aspects need to be addressed before we attain mesoscale devices with new properties. In this article, we review the unique materials properties of these epitaxially directed mesoscale composite structures, discussing their very high crystallinity, structural uniformity, and orientation. We also review how the structures can be size-tuned, from ∼2 nm up to ∼50 nm, and how they can be spatially ordered. We discuss how unusual strain states can be induced in the structures, and how epitaxial stabilization of the mesoscale surfaces within the films eliminates problems of surface degradation inherent to “free” nano/mesostructures. Several exemplar systems are given to show that composite films represent an unrivaled new approach to engineering new properties into mesoscale systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hinterdorfer, P., Dufrene, Y.F., Nat. Methods 3, 347 (2006).CrossRefGoogle Scholar
Imboden, M., Bishop, D., Phys. Today 67, 45 (2014).CrossRefGoogle Scholar
Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., Weiss, S., Science 307, 538 (2005).CrossRefGoogle Scholar
Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne, R.P., Nat. Mater. 7, 442 (2008).CrossRefGoogle Scholar
Corma, A., Chem. Rev. 97, 2373 (1997).CrossRefGoogle Scholar
Ariga, K., Yamauchi, Y., Aono, M., APL Mater. 3 (5), 061001 (2015).CrossRefGoogle Scholar
Keten, S., Buehler, M.J., J. R. Soc. Interface 7, 1709 (2010).CrossRefGoogle Scholar
Hwang, H.Y., Iwasa, Y., Kawasaki, M., Keimer, B., Nagaosa, N., Tokura, Y., Nat. Mater. 11, 103 (2012).CrossRefGoogle Scholar
Niederberger, M., Acc. Chem. Res. 40, 793 (2007).CrossRefGoogle Scholar
Zhang, W., Ramesh, R., MacManus-Driscoll, J.L., Wang, H., MRS Bull. 40, 736 (2015).CrossRefGoogle Scholar
MacManus-Driscoll, J.L., Adv. Funct. Mater. 20, 2035 (2010).CrossRefGoogle Scholar
Zhao, R., Li, W., Lee, J.H., Choi, E.M., Liang, Y., Zhang, W., Tang, R., Wang, H., Jia, Q., MacManus-Driscoll, J.L., Yang, H., Adv. Funct. Mater. 24, 5240 (2014).CrossRefGoogle Scholar
Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., Ramesh, R., Science 303, 661 (2004).CrossRefGoogle Scholar
Fix, T., Choi, E.-M., Robinson, J.W.A., Lee, S.B., Chen, A., Prasad, B., Wang, H., Blamire, M.G., MacManus-Driscoll, J.L., Nano Lett. 13, 5886 (2013).CrossRefGoogle Scholar
Liu, H.-J., Chen, L.-Y., He, Q., Liang, C.-W., Chen, Y.-Z., Chien, Y.-S., Hsieh, Y.-H., Lin, S.-J., Arenholz, E., Luo, C.-W., Chueh, Y.-L., Chen, Y.-C., Chu, Y.-H., ACS Nano 6, 6952 (2012).CrossRefGoogle Scholar
Harrington, S.A., Zhai, J., Denev, S., Gopalan, V., Wang, H., Bi, Z., Redfern, S.A.T., Baek, S.-H., Bark, C.W., Eom, C.-B., Jia, Q., Vickers, M.E., MacManus-Driscoll, J.L., Nat. Nanotechnol. 6, 491 (2011).CrossRefGoogle Scholar
Ni, Y., Rao, W., Khachaturyan, A.G., Nano Lett. 9, 3275 (2009).CrossRefGoogle Scholar
Zhang, C.L., Yeo, S., Horibe, Y., Choi, Y.J., Guha, S., Croft, M., Cheong, S.W., Mori, S., Appl. Phys. Lett. 90, 133123 (2007).CrossRefGoogle Scholar
Park, S., Horibe, Y., Asada, T., Wielunski, L.S., Lee, N., Bonanno, P.L., O’Malley, S.M., Sirenko, A.A., Kazimirov, A., Tanimura, M., Gustafsson, T., Cheong, S.W., Nano Lett. 8, 720 (2008).CrossRefGoogle Scholar
Mecke, K.R., Acta Phys. Pol. B 28, 1747 (1997).Google Scholar
Lu, Y., Wang, C., Gao, Y., Shi, R., Liu, X., Wang, Y., Phys. Rev. Lett. 109, 086101 (2012).Google Scholar
Kang, B.S., Wang, H., MacManus-Driscoll, J.L., Li, Y., Jia, Q.X., Mihut, I., Betts, J.B., Appl. Phys. Lett. 88, 192514 (2006).CrossRefGoogle Scholar
Chen, A., Bi, Z., Tsai, C.-F., Lee, J., Su, Q., Zhang, X., Jia, Q., MacManus-Driscoll, J.L., Wang, H., Adv. Funct. Mater. 21, 2423 (2011).CrossRefGoogle Scholar
Chen, A., Zhang, W., Jian, J., Wang, H., Tsai, C.-F., Su, Q., Jia, Q., MacManus-Driscoll, J.L., J. Mater. Res. 28, 1707 (2013).CrossRefGoogle Scholar
Bi, Z., Weal, E., Luo, H., Chen, A., MacManus-Driscoll, J.L., Jia, Q., Wang, H., J. Appl. Phys. 109, 054302 (2011).CrossRefGoogle Scholar
Wu, S.M., Cybart, S.A., Yi, D., Parker, J.M., Ramesh, R., Dynes, R.C., Phys. Rev. Lett. 110, 067202 (2013).Google Scholar
Zhang, W., Li, L., Lu, P., Su, Q., Fan, M., Khatkhatay, F., Chen, A., Jia, Q.X., Zhang, X., MacManus-Driscoll, J.L., Wang, H., ACS Appl. Mater. Interfaces (2015), doi:10.1021/acsami.5b06314 (2015).Google Scholar
Chen, A., Weigand, M., Bi, Z., Zhang, W., Lu, X., Dowden, P., MacManus-Driscoll, J.L., Wang, H., Jia, Q., Sci. Rep. 4, 5426 (2014).CrossRefGoogle Scholar
Chen, A., Zhang, W., Khatkatay, F., Su, Q., Tsai, C.-F., Chen, L., Jia, Q.X., MacManus-Driscoll, J.L., Wang, H., Appl. Phys. Lett. 102, 093114 (2013).Google Scholar
MacManus-Driscoll, J.L., Zerrer, P., Wang, H., Yang, H., Yoon, J., Fouchet, A., Yu, R., Blamire, M.G., Jia, Q., Nat. Mater. 7, 314 (2008).CrossRefGoogle Scholar
Pradhan, A.K., Hunter, D., Williams, T., Lasley-Hunter, B., Bah, R., Mustafa, H., Rakhimov, R., Zhang, J., Sellmyer, D.J., Carpenter, E.E., Sahu, D.R., Huang, J.L., J. Appl. Phys. 103, 023914 (2008).CrossRefGoogle Scholar
Maletic, S., Popovic, D., Dojcilovic, J., J. Alloys Compd. 496, 388 (2010).CrossRefGoogle Scholar
Lee, S.B., Sangle, A., Lu, P., Chen, A., Zhang, W., Lee, J.S., Wang, H., Jia, Q., MacManus-Driscoll, J.L., Adv. Mater. 26, 6284 (2014).CrossRefGoogle Scholar
Yang, S.M., Lee, S.B., Jian, J., Zhang, W., Jia, Q.X., Wang, H., Noh, T.W., Kalinin, S.V., MacManus-Driscoll, J.L., Nat. Commun. 6, 8588 (2015).CrossRefGoogle Scholar
Weal, E., Patnaik, S., Bi, Z., Wang, H., Fix, T., Kursumovic, A., MacManus-Driscoll, J.L., Appl. Phys. Lett. 97, 153121 (2010).CrossRefGoogle Scholar
Choi, E.-M., Weal, E., Bi, Z., Wang, H., Kursumovic, A., Fix, T., Blamire, M.G., MacManus-Driscoll, J.L., Appl. Phys. Lett. 102, 012905 (2013).Google Scholar
Wu, S.M., Cybart, S.A., Yu, P., Rossell, M.D., Zhang, J.X., Ramesh, R., Dynes, R.C., Nat. Mater. 9, 756 (2010).CrossRefGoogle Scholar
Xu, Q., Sheng, Y., Xue, X., Yuan, X., Wen, Z., Du, J., Jpn. J. Appl. Phys. 53, 08nm01 (2014).Google Scholar
Aimon, N.M., Kim, D.H., Sun, X., Ross, C.A., ACS Appl. Mater. Interfaces 7, 2263 (2015).CrossRefGoogle Scholar
Stoykovich, M.P., Nealey, P.F., Mater. Today 9, 20 (2006).CrossRefGoogle Scholar
Takamura, Y., Chopdekar, R.V., Arenholz, E., Suzuki, Y., Appl. Phys. Lett. 92, 162504 (2008).CrossRefGoogle Scholar
MacManus-Driscoll, J.L., Suwardi, A., Kursumovic, A., Bi, Z., Tsai, C.F., Wang, H., Jia, Q.X., Lee, O.J., APL Mater. 3, 062507 (2015).CrossRefGoogle Scholar
Kursumovic, A., Defay, E., Lee, O.J., Tsai, C.-F., Bi, Z., Wang, H., MacManus-Driscoll, J.L., Adv. Funct. Mater. 23, 5881 (2013).CrossRefGoogle Scholar
Lee, O., Harrington, S.A., Kursumovic, A., Defay, E., Wang, H., Bi, Z., Tsai, C.-F., Yan, L., Jia, Q., MacManus-Driscoll, J.L., Nano Lett. 12, 4311 (2012).CrossRefGoogle Scholar
Alexe, M., Hesse, D., Schmidt, V., Senz, S., Fan, H.J., Zacharias, M., Goesele, U., Appl. Phys. Lett. 89, 172907 (2006).CrossRefGoogle Scholar
Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X., Yu, D.P., Phys. Rev. B Condens. Matter 73, 235409 (2006).CrossRefGoogle Scholar
Lee, S.B., Zhang, W., Khatkatay, F., Jia, Q.X., Wang, H., MacManus-Driscoll, J.L., Adv. Funct. Mater. 25 (27), 4328 (2015).Google Scholar
Lee, S.B., Zhang, W., Khatkatay, F., Wang, H., Jia, Q.X., MacManus-Driscoll, J.L., Nano Lett. (2015), doi: 10.1021/acs.nanolett.5b02726.Google Scholar
Jeong, J., Aetukuri, N., Graf, T., Schladt, T.D., Samant, M.G., Parkin, S.S.P., Science 339, 1402 (2013).CrossRefGoogle Scholar
Kim, K.-H., Gaba, S., Wheeler, D., Cruz-Albrecht, J.M., Hussain, T., Srinivasa, N., Lu, W., Nano Lett. 12, 389 (2012).CrossRefGoogle Scholar