Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T01:34:39.130Z Has data issue: false hasContentIssue false

Combinatorial Screening and Optimization of Luminescent Materials and Organic Light-Emitting Devices

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The rapid development of modern photonic technologies—for example, mercury-free lamps, flat-panel displays, and solid-state lamps—demands the timely discovery of advanced phosphors. A combinatorial process has been developed to dramatically accelerate the experimental search for such phosphors. High-density phosphor “libraries” containing from 100 to over 1000 discrete chemical compositions on a 1 in. × 1 in. substrate have been made in thin-film or powder form using selective vapor deposition and liquid-dispensing techniques, respectively. In this article, the existing methods of combinatorial synthesis and screening of phosphors will be reviewed with examples. These methods may also be used to screen organic-based solid-state materials and optimize their device properties. In this regard, combinatorial and spreading techniques have been utilized to study and rapidly optimize organic light-emitting devices (OLEDs).

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Blasse, G. and Grabmaier, B.C., Luminescent Materials (Springer-Verlag, New York, 1994).Google Scholar
2.Justel, T., Nikol, H., and Ronda, C., Angew. Chem., Int. Ed. Engl. 37 (1998) p. 3084.Google Scholar
3.Ronda, C.R., J. Alloys Compd. 225 (1995) p. 534.Google Scholar
4.Grabmaier, B.C., Rossner, W., and Leppert, J., Phys. Status Solidi A 130 (1992) p. K183.CrossRefGoogle Scholar
5.Xiang, X.-D., Sun, X.-D., Briceño, G., Lou, Y., Wang, K.-A., Chang, H., Wallace-Freedman, W.G., Chen, S.-W., and Schultz, P.G., Science 268 (1995) p. 1738.CrossRefGoogle Scholar
6.Briceño, G., Chang, H., Sun, X.-D., Schultz, P.G., and Xiang, X.-D., Science 270 (1995) p. 273.Google Scholar
7.Sun, X.-D., Gao, C., Wang, J., and Xiang, X.-D., Appl. Phys. Lett. 70 (1997) p. 3353.Google Scholar
8.Sun, X.-D. and Xiang, X.-D., Appl. Phys. Lett. 72 (1998) p. 525.CrossRefGoogle Scholar
9.Wang, J., Yoo, Y., Gao, C., Takeuchi, I., Sun, X.-D., Chang, H., Xiang, X.-D., and Schultz, P.G., Science 279 (1998) p. 1712.CrossRefGoogle Scholar
10.Danielson, E., Golden, J.H., McFarland, E.W., Reaves, C.M., Weinberg, W.H., and Wu, X.-D., Nature 389 (1997) p. 944.Google Scholar
11.Danielson, E., Devenney, M., Giaquinta, D.M., Golden, J.H., Haushalter, R.C., McFarland, E.W., Poojary, D.M., Reaves, C.M., Weinberg, W.H., and Wu, X.D., Science 279 (1998) p. 837.CrossRefGoogle Scholar
12.Sun, X.-D., Biotechnol. Bioeng. 61 (4) (1999) p. 193.3.0.CO;2-8>CrossRefGoogle Scholar
13.Sun, X.-D., Wang, K.-A., Yoo, Y., Wallace-Freedman, W.G., Gao, C., Xiang, X.-D., and Schultz, P., Adv. Mater. 9 (1998) p. 1046.Google Scholar
14.Isaacs, E.D., Kao, M., Aeppli, G., Xiang, X.-D., Sun, X.-D., Schultz, P., Marcus, M.A., Cargill, G.S., and Haushalter, R., Appl. Phys. Lett. 73 (1998) p. 1820.CrossRefGoogle Scholar
15.Sun, X.-D., “A Combinatorial Approach in the Discovery of Advanced Materials,” PhD thesis, University of California—Berkeley, May 1998.Google Scholar
16.Tang, C.W. and Van, S.A.Slyke, Appl. Phys. Lett. 51 (1987) p. 913.Google Scholar
17.Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L., and Holmes, A.B., Nature 347 (1990) p. 539.Google Scholar
18.Wakimoto, T., Kawami, S., Nagayama, K., Yonemoto, Y., Murayama, R., Funaki, J., Sato, H., Nakada, H., and Imai, K., in Proc. Int. Symp. on Inorganic and Organic Electroluminescence (Hamamatsu, Japan, 1994) p. 77.Google Scholar
19.Hung, L.S., Tang, C.W., and Mason, M.G., Appl. Phys. Lett. 70 (1997) p. 152.Google Scholar
20.Jabbour, G.E., Kawabe, Y., Shaheen, S.E., Wang, J.F., Morrell, M.M., Kippelen, B., and Peyghambarian, N., Appl. Phys. Lett. 71 (1997) p. 1762.CrossRefGoogle Scholar
21.Jabbour, G.E., Morrell, M.M., Shaheen, S.E., Kippelen, B., and Peyghambarian, N., in Proc. 9th Int. Workshop on Inorganic and Organic Electroluminescence (Society for Information Display, San Jose, 1998) p. 49.Google Scholar
22.Jabbour, G.E., Kippelen, B., Armstrong, N.R., and Peyghambarian, N., Appl. Phys. Lett. 73 (1998) p. 1185.Google Scholar
23.Tang, C.W., Van Slyke, S.A., and Chen, C.H., J. Appl. Phys. 65 (1989) p. 3610.Google Scholar
24.Van Slyke, S.A., Chen, C.H., and Tang, C.W., Appl. Phys. Lett. 69 (1996) p. 2160.Google Scholar
25.Baldo, M.A., O'Brien, D.F., You, Y., Shoustikov, A., Sibley, S., Thompson, M.E., and Forrest, S., Nature 395 (1998) p. 151.Google Scholar
26.Choong, V.-E., Shi, S., and Curless, J., Appl. Phys. Lett. 76 (2000) p. 958.Google Scholar
27.Jabbour, G.E. (1997, unpublished).Google Scholar
28.Jabbour, G.E., Laser Focus World 13 (March 1999) p. 13.Google Scholar
29.Shmitz, C., Posch, P., Thelakkat, M., and Schmidt, H.W., Phys. Chem. Chem. Phys. 1 (1999) p. 1777.Google Scholar
30.Schmitz, C., Thelakkat, M., and Schmidt, H.W., Adv. Mater. 11 (1999) p. 821.Google Scholar
31.Zou, L., Savvatéev, V., Booher, J., Kim, C.-H., and Shinar, J., Appl. Phys. Lett. 79 (2001) p. 2282.CrossRefGoogle Scholar
32.Chen, C.H., Tang, C.W., Shi, J., and Klubek, K.P., Thin Solid Films 363 (2000) p. 327.Google Scholar
33.Bulovic, V., Shoustikov, A., Baldo, M.A., Bose, E., Kozlov, V.G., Thompson, M.E., and Forrest, S.R., Chem. Phys. Lett. 287 (1998) p. 455.Google Scholar