Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T00:13:39.589Z Has data issue: false hasContentIssue false

Combinatorial Investigation of Spintronic Materials

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

High-throughput synthesis and characterization techniques have been effective in discovering new materials and performing rapid mapping of phase diagrams. The application of the combinatorial strategy to explore doped transition-metal oxides has led to the discovery of a transparent room-temperature ferromagnetic oxide in Co-doped anatase TiO2. The discovery has triggered a wave of studies into other metal oxide systems in pursuit of diluted magnetic semiconductors. In this article, we describe recent combinatorial studies of magnetic transition-metal oxides, germanium-based magnetic semiconductors, and Heusler alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Xiang, X.-D., Sun, X., Briceno, G., Lou, Y., Wang, K.-A., Chang, H., Wallace-Freedman, W.G., Chen, S.W., and Schultz, P.G., Science 268 (1995) p. 1738.CrossRefGoogle Scholar
2.Wang, J., Yoo, Y., Gao, C., Takeuchi, I., Sun, X., Xiang, X.-D., and Schultz, P.G., Science 279 (1998) p. 1712.CrossRefGoogle Scholar
3.Chang, H., Gao, C., Takeuchi, I., Yoo, Y., Wang, J., Schultz, P.G., Xiang, X.-D., Sharma, R.P., Downes, M., and Venkatesan, T., Appl. Phys. Lett. 72 (1998) p. 2185.Google Scholar
4.Briceno, G., Chang, H., Sun, X., Schultz, P.G., and Xiang, X.-D., Science 270 (1995) p. 273.Google Scholar
5.Matsumoto, Y., Murakami, M., Jin, Z.W., Ohtomo, A., Ohashi, S., Lippmaa, M., Kawasaki, M., and Koinuma, H., Jpn. J. Appl. Phys., Part 2: Lett. 38 (1999) p. L603.CrossRefGoogle Scholar
6.van Dover, R.B., Schneemeyer, L.F., and Fleming, R.M., Nature 392 (1998) p. 162.Google Scholar
7.Takeuchi, I., Famodu, O., Read, J.C., Aronova, M., Chang, K.-S., Craciunescu, C., Lofland, S.E., Wuttig, M., Wellstood, F.C., Knouse, L., and Orozco, A., Nature Mater. 2 (2003) p. 180.Google Scholar
8.van Dover, R.B., Hong, M., Gyorgy, E.M., Dillon, J.F. Jr., and Albiston, S.D., J. Appl. Phys. 57 (1985) p. 3897.Google Scholar
9.Yoo, Y.K., Duewer, F.W., Yang, H., Dong, Y., and Xiang, X.-D., Nature 406 (2000) p. 704.Google Scholar
10.Yoo, Y.K., Duewer, F.W., Fukumura, T., Yang, H., Dong, Y., Chang, H., Hasegawa, T., Kawasaki, M., Koinuma, H., and Xiang, X.-D., Phys. Rev. B 63 224421 (2001).Google Scholar
11.Fukumura, T., Ohtani, M., Kawasaki, M., Okimoto, Y., Kageyama, T., Koida, T., Hasegawa, T., Tokura, Y., and Koinuma, H., Appl. Phys. Lett. 77 (2000) p. 3426.Google Scholar
12.Yoo, Y.K., Ohnishi, T., Wang, G., Duewer, F.W., Xiang, X.-D., Chu, Y.-S., Mancini, D.C., Li, Y.-Q., and O'Handley, R.C., Intermetallics 9 (2001) p. 541.Google Scholar
13.Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S.-Y., and Koinuma, H., Science 291 (2001) p. 854.CrossRefGoogle Scholar
14. For example, see Proc. 10th Int. Workshop on Oxide Electronics.Google Scholar
15.Ohno, H., Science 281 (1998) p. 951.CrossRefGoogle Scholar
16.Matsumoto, Y., Murakami, M., Jin, Z.W., Nakayama, A., Yamaguchi, T., Ohmori, T., Suzuki, E., Nomura, S., Kawasaki, M., and Koinuma, H., in Proc. SPIE, Vol. 3941 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 2000) p. 19.Google Scholar
17.Jin, Z.W., Murakami, M., Fukumura, T., Matsumoto, Y., Ohtomo, A., Kawasaki, M., and Koinuma, H., J. Cryst. Growth 214/215 (2000) p. 55.Google Scholar
18.Hasegawa, T., Kageyama, T., Fukumura, T., Okazaki, N., Kawasaki, M., Koinuma, H., Yoo, Y.K., Duewer, F., and Xiang, X.-D., Appl. Surf. Sci. 189 (2002) p. 210.Google Scholar
19.Jin, Z.W., Fukumura, T., Kawasaki, M., Ando, K., Saito, H., Sekiguchi, T., Yoo, Y.Z., Murakami, M., Matsumoto, Y., Hasegawa, T., and Koinuma, H., Appl. Phys. Lett. 78 (2001) p. 3824.CrossRefGoogle Scholar
20.Ando, K., Saito, H., Jin, Z.W., Fukumura, T., Kawasaki, M., Matsumoto, Y., and Koinuma, H., J. Appl. Phys. 89 (2001) p. 7284.CrossRefGoogle Scholar
21.Tsui, F., He, L., Ma, L., Tkachuk, A., Chu, Y.S., Nakajima, K., and Chikyow, T. (unpublished).Google Scholar
22.Yoo, Y. and Tsui, F., MRS Bull. 27 (2002) p. 316.Google Scholar
23. For example, see Fritzsche, H., Phys. Rev. 99 (1955) p. 406.Google Scholar
24.Tsui, F., Ma, L., and He, L., Appl. Phys. Lett. 83 (5) (2003) p. 954.Google Scholar
25.de Groot, R.A., Mueller, F.M., van Engen, P.G., and Buschow, K.H.J., Phys. Rev. Lett. 50 (1983) p. 2024.CrossRefGoogle Scholar
26.Ambrose, T., Krebs, J.J., and Prinz, G.A., Appl. Phys. Lett. 76 (2000) p. 3280.Google Scholar
27.Dong, J.W., Chen, L.C., Xie, J.Q., Müller, T.A.R., Carr, D.M., Palmstrøm, C.J., McKernan, S., Pan, Q., and James, R.D., J. Appl. Phys. 88 (2000) p. 7357.CrossRefGoogle Scholar
28.Takeuchi, I., van Dover, R.B., and Koinuma, H., MRS Bull. 27 (2002) p. 301.CrossRefGoogle Scholar
29.Fleet, E.F., Chatraphorn, S., Wellstood, F.C., Knauss, L.A., and Green, S.M., Rev. Sci. Instrum. 72 (2001) p. 3281.Google Scholar
30.Murray, S.J., Marioni, M.A., Kukla, A.M., Robinson, J., O'Handley, R.C., and Allen, S.M., J. Appl. Phys. 87 (2000) p. 5774.CrossRefGoogle Scholar
31.Chernenko, V.A., Cesari, E., Kokorin, V.V., and Vitenko, I.N., Scripta Metall. Mater. 33 (1995) p. 1239.Google Scholar
32.Patil, S.I., Deng, T., Lofland, S.E., Bhagat, S.M., Takeuchi, I., Famodu, O., Read, J.C., Chang, K.-S., Craciunescu, C., and Wuttig, M., Appl. Phys. Lett. 81 (2002) p. 1279.Google Scholar