Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T01:39:54.139Z Has data issue: false hasContentIssue false

Chemistry at high pressure: Tuning functional materials properties

Published online by Cambridge University Press:  10 October 2017

Paolo Postorino
Affiliation:
Department of Physics, Sapienza Università di Roma, Italy; paolo.postorino@roma1.infn.it
Lorenzo Malavasi
Affiliation:
Department of Chemistry, University of Pavia, Italy; lorenzo.malavasi@unipv.it
Get access

Abstract

High pressure is a fascinating tool to promote and enhance the properties of materials as well as to induce new and exotic phenomena. This is especially of interest for functional materials, which are very sensitive to external pressure (P) and whose features can be tuned and controlled in a rigorous fashion. Through specific examples of the role of applied P on two families of functional compounds based on the perovskite lattice, manganites, and organic–inorganic hybrid perovskites, it is shown that the particular properties of interest can be manipulated by means of pressure. Examples highlight the effects at both the microscopic and macroscopic level, and show how the understanding of P-induced phenomena is essential for the development of materials chemistry design.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dagotto, E., Hotta, T., Moreo, A., Phys. Rep. 344, 1 (2001).CrossRefGoogle Scholar
Dagotto, E., Science 309, 257 (2005).CrossRefGoogle Scholar
Tao, J., Niebieskikwiat, D., Kie, Q., Schoefield, M.A., Wu, L., Li, Q., Zhu, Y., Proc. Natl. Acad. Sci. U.S.A. 108, 20941 (2011).CrossRefGoogle Scholar
Millis, A.J., Nature 392, 147 (1998).Google Scholar
Millis, A.J., Littlewood, P.B., Shraiman, B.I., Phys. Rev. Lett. 74, 5144 (1995).CrossRefGoogle Scholar
Zener, C., Phys. Rev. 82, 403 (1951).CrossRefGoogle Scholar
Hwang, H.Y., Cheong, S.-W., Radaelli, P.G., Marezio, M., Batlogg, B., Phys. Rev. Lett. 75, 914 (1995).Google Scholar
Meneghini, C., Levy, D., Mobilio, S., Ortolani, M., Nunez-Reguero, M., Kumar, A., Sarma, D.D., Phys. Rev. B Condens. Matter 65, 012111 (2002).CrossRefGoogle Scholar
Postorino, P., Congeduti, A., Dore, P., Sacchetti, A., Gorelli, F., Ulivi, L., Kumar, A., Sarma, D.D., Phys. Rev. Lett. 91, 175501 (2003).CrossRefGoogle Scholar
Sacchetti, A., Postorino, P., Capone, M., New J. Phys. 8, 3 (2006).Google Scholar
Baldini, M., Capogna, L., Capone, M., Arcangeletti, E., Petrillo, C., Goncharenko, I., Postorino, P., J. Phys. Condens. Matter 24, 045601 (2012).CrossRefGoogle Scholar
Congeduti, A., Postorino, P., Caramagno, E., Nardone, M., Kumar, A., Sarma, D.D., Phys. Rev. Lett. 86, 1251 (2001).Google Scholar
Sarma, D.D., Shanthi, N., Barman, S.R., Hamada, N., Sawada, H., Terakura, K., Phys. Rev. Lett. 75, 1126 (1995).Google Scholar
Loa, I., Adler, P., Grzechnik, A., Syassen, K., Schwarz, U., Hanfland, M., Rozenberg, G.Kh, Gorodetsky, P., Pasternak, M.P, Phys. Rev. Lett. 87, 125501 (2001).Google Scholar
Baldini, M., Struzhkin, V.V., Goncharov, A.F., Postorino, P., Mao, W.L., Phys. Rev. Lett. 106, 066402 (2011).Google Scholar
Baldini, M., Muramatsu, T., Sherafati, M., Mao, H.K., Malavasi, L., Postorino, P., Satpathy, S., Struzhkin, V.V., Proc. Natl. Acad. Sci. U.S.A. 112, 10869 (2015).CrossRefGoogle Scholar
Brenner, T.M., Egger, D.A., Kronin, L., Hodes, G., Cahen, D., Nat. Rev. Mater. 1, 15007 (2016).Google Scholar
Zhao, Y., Zhu, K., Chem. Soc. Rev. 45, 655 (2016).Google Scholar
Saparov, B., Mitzi, D.B., Chem. Rev. 116, 4558 (2016).Google Scholar
Kieslich, G., Sun, S., Cheetham, A.K., Chem. Sci. 6, 3430 (2015).Google Scholar
Capitani, F., Marini, C., Caramazza, S., Postorino, P., Garbarino, G., Hanfland, M., Pisanu, A., Quadrelli, P., Malavasi, L., J. Appl. Phys. 119, 185901 (2016).Google Scholar
Szafranski, M., Katrusiak, A., J. Phys. Chem. Lett. 7, 3458 (2016).CrossRefGoogle Scholar
Wang, Y., Lu, X., Yang, W., Wen, T., Yang, L., Ren, X., Wang, L., Lin, Z., Zhao, Y., J. Am. Chem. Soc. 137, 11144 (2015).Google Scholar
Liu, G., Kong, L., Gong, J., Yang, W., Mao, H.-K., Hu, Q., Liu, Z., Schaller, R.D., Zhang, D., Xu, T., Adv. Funct. Mater. 27, 1604208 (2017).CrossRefGoogle Scholar
Wang, L., Wang, K., Zou, B., J. Phys. Chem. Lett. 7, 2556 (2016).Google Scholar
Wang, L., Wang, K., Xiao, G., Zeng, Q., Zou, B., J. Phys. Chem. Lett. 7, 5273 (2016).Google Scholar
Mancini, A., Quadrelli, P., Amoroso, G., Milanese, C., Boiocchi, M., Sironi, A., Patrini, M., Guizzetti, G., Malavasi, L., J. Solid State Chem. 240, 55 (2016).CrossRefGoogle Scholar
Kong, L., Liu, G., Gong, J., Hu, Q., Schaller, R.D Dera, P., Zhang, D., Liu, Z., Yang, W., Zhu, K., Tang, Y., Wang, C., Wei, S.-H, Xu, T., Mao, H.-K, Proc. Natl. Acad. Sci. U.S.A. 113, 8910 (2016).Google Scholar
Jaffe, A., Lin, Y., Mao, W.L., Karunadasa, H.I., J. Am. Chem. Soc. 139, 4330 (2017).Google Scholar
Postorino, P., Malavasi, L., J. Phys. Chem. Lett. 8, 2613 (2017).Google Scholar